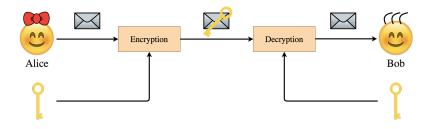
Combinatorics in Algebraic and Logical Cryptanalysis

Monika Trimoska

MIS, University of Picardie Jules Verne

PhD defense 14 January 2021

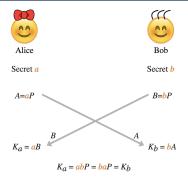
Secret-key cryptography



The communicating parties share a secret key.

Public-key cryptography

Protocols for performing secret-key exchange.



Use of one-way functions: easy to compute, hard to invert.

Hard problems

There is no known polynomial-time algorithm for finding a solution or deciding if a solution exists. But, verifying if a solution is correct can be done in polynomial time.

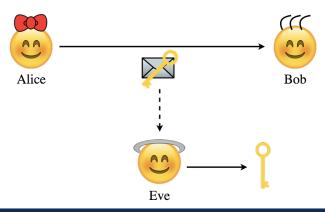
NP Problems

- Knapsack problem
- Vertex cover problem
- Graph coloring problem

Boolean satisfiability problem (SAT)

SAT is the problem of determining whether there exists an assignment of Boolean variables that satisfies a given propositional formula.

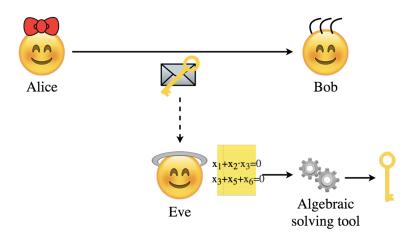
Cryptanalysis



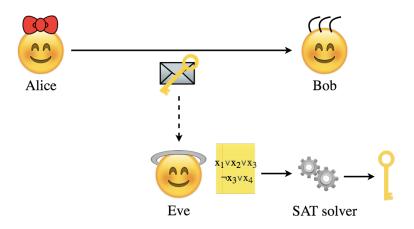
Goal

Determine minimum key length requirements.

Algebraic cryptanalysis



Logical cryptanalysis



Discrete log problem

Defining discrete log problem

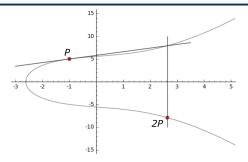
Given a finite cyclic group (G, +) of order N and two elements $g, h \in G$, find $x \in \mathbb{Z}$ such that

$$h = x \cdot g$$
.

Elliptic curve discrete log problem (ECDLP)

Let K be a finite field, $a_1, a_2, a_3, a_4, a_6 \in K$ and let E be an elliptic curve defined by

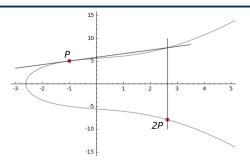
$$E: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$



Elliptic curve discrete log problem (ECDLP)

Let K be a finite field, $a_1, a_2, a_3, a_4, a_6 \in K$ and let E be an elliptic curve defined by

$$E: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$



Defining ECDLP:

Find $\mathbf{x} \in \mathbb{Z}$, such that $\mathbf{x}P = Q$, where $P, Q \in E(K)$.

Application example

Diffie-Hellman key exchange 20 20 Alice Bob Secret a Secret b A = aPB=bP $K_a = aB$ $K_b = bA$ $K_a = abP = baP = K_b$

E and $P \in E(K)$ are public parameters.

Cryptographic attacks

- Generic attacks
 - Parallel Collision Search algorithm (PCS)

TCHES, Volume 2021, Issue 2

- Attacks on specific families
 - Index calculus attack on elliptic curves defined over \mathbb{F}_{2^n} , with n prime.

CP 2020

AfricaCrypt 2020

Parallel Collision Search

Collision search

Solving the ECDLP

Having two different linear combinations of a random point $R \in E(K)$

$$R = aP + bQ$$
$$R = a'P + b'Q,$$

we infer that

$$aP + bQ = a'P + b'Q$$
$$(a - a')P = (b' - b)xP,$$

and we compute

$$x = \frac{a - a'}{b' - b} \pmod{N}.$$

Collision search

Collision

Given a random map $f: S \to S$ on a finite set S, we call collision any pair R,R' of elements in S such that f(R) = f(R').

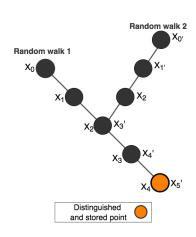
$$f(R) = \begin{cases} R+P & \text{if } R \in S_1\\ 2R & \text{if } R \in S_2\\ R+Q & \text{if } R \in S_3, \end{cases}$$

Property of *f*

Input $(aP + bQ) \rightarrow \text{Output } (a'P + b'Q)$.

Parallel Collision Search

- Proposed by van Oorschot & Wiener (1996).
- Distinguished points: a set of points having an easily testable property.
 ex. The x-coordinate has 3 trailling
 - ex. The x-coordinate has 3 trailing zero bits: 10101101000.
- Only distinguished points are stored in memory.
- θ the proportion of distinguished points in a set S.



Contributions

 We provided a more refined analysis of the running time of a parallel collision search for finding one or multiple collisions.

Theorem. [T., Ionica, Dequen (2020)]

Let S be a set with N elements and $f:S\to S$ a random map. We denote by θ the proportion of distinguished points in S. The expected running time to find m collisions for f with a memory constraint of w words is:

$$\frac{1}{L}\left(\frac{w}{\theta}+(m-\frac{w^2}{2\theta^2N})\frac{\theta N}{w}+\frac{2m}{\theta}\right).$$

Contributions

 We replaced the classical hash table by a simple structure with lower memory requirements, that is inspired by radix trees (Packed Radix-Tree-List - PRTL).

Collisions	Memory limit	Runtime		Stored points	
		PRTL	Hash table	PRTL	Hash table
4,000,000	1 GB	34.64 h	58.80 h	46,820,082	12,912,177
16,000,000	2 GB	88.18 h	137.46 h	93,640,161	25,824,345
50,000,000	4 GB	203.24 h	276.80 h	168,325,978	51,648,716

Table: Runtime for multi-collision search for a 55-bit curve using PRTLs and hash tables.

Index Calculus

Index calculus on binary elliptic curves

Let \mathbb{F}_{2^n} be a finite field and E be an elliptic curve defined by

$$E: y^2 + xy = x^3 + ax^2 + b$$

with $a, b \in \mathbb{F}_{2^n}$ and n prime.

Index calculus on binary elliptic curves

Let \mathbb{F}_{2^n} be a finite field and E be an elliptic curve defined by

$$E: y^2 + xy = x^3 + ax^2 + b$$

with $a, b \in \mathbb{F}_{2^n}$ and n prime.

- Choice of an appropriate factor base B
- Point decomposition phase

Find $P_1,\ldots,P_{m-1}\in B$, such that, for $R\in E(\mathbb{F}_{2^n})$ $R=P_1+\ldots+P_{m-1}$

$$R = P_1 + \ldots + P_{m-1}$$

Selection Linear algebra

Point Decomposition Problem (PDP)

Semaev's summation polynomials (2004)

$$S_2(X_1, X_2) = X_1 + X_2,$$

$$S_3(X_1, X_2, X_3) = X_1^2 X_2^2 + X_1^2 X_3^2 + X_1 X_2 X_3 + X_2^2 X_3^2 + b,$$

For m > 4

$$S_m(X_1,...,X_m) = Res_X(S_{m-k}(X_1,...,X_{m-k-1},X),S_{k+2}(X_{m-k},...,X_m,X))$$

Point Decomposition Problem (PDP)

Semaev's summation polynomials (2004)

$$\begin{split} S_2(X_1, X_2) &= X_1 + X_2, \\ S_3(X_1, X_2, X_3) &= X_1^2 X_2^2 + X_1^2 X_3^2 + X_1 X_2 X_3 + X_2^2 X_3^2 + b, \end{split}$$

For m > 4

$$S_m(X_1, ..., X_m) = Res_X(S_{m-k}(X_1, ..., X_{m-k-1}, X), S_{k+2}(X_{m-k}, ..., X_m, X))$$

Reducing the PDP to the problem of finding the roots of S_m

For
$$R, P_1, \ldots, P_{m-1} \in E(\mathbb{F}_{2^n})$$

$$R+P_1+\ldots+P_{m-1}=\mathcal{O}\iff S_m(\mathbf{x}_R,\mathbf{x}_{P_1},\ldots,\mathbf{x}_{P_{m-1}})=0$$

Index calculus on elliptic curves over extension fields

Gaudry (2008), Diem (2009)

Choice of an appropriate factor base

When E is an elliptic curve defined over \mathbb{F}_{q^n} , with n small, the factor base is the set of points whose x-coordinate lies in \mathbb{F}_q .

Weil descent

Rewrite the equation $S_{n+1}(\mathbf{x}_R, X_1, \dots, X_n) = 0$ as a system of n equations over \mathbb{F}_q .

PDP algebraic model

Yun-Ju et al. (2013)

Factor base for elliptic curves defined over \mathbb{F}_{2^n} , with n prime

An *I*-dimensional vector subspace V of $\mathbb{F}_{2^n}/\mathbb{F}_2$. When $I \sim \frac{n}{m}$ the system has a reasonable chance to have a solution.

X_i -variables

$$X_1 = a_{1,0} + \dots + a_{1,l-1}t^{l-1}$$

$$X_2 = a_{2,0} + \dots + a_{2,l-1}t^{l-1}$$

$$\dots$$

$$X_m = a_{m,0} + \dots + a_{m,l-1}t^{l-1}$$

From the algebraic model to the SAT-reasoning model

Using SAT solvers as a cryptanalytic tool requires expressing the cryptographic problem as a Boolean formula in conjunctive normal form (CNF) - a conjunction (\wedge) of OR-clauses.

Example.

$$(\neg x_1 \lor x_2) \land (\neg x_2 \lor x_4 \lor \neg x_5)) \land (x_5 \lor x_6)$$

From the algebraic model to the SAT-reasoning model

XOR-enabled SAT solvers are adapted to read a formula in CNF-XOR form - a conjunction (\land) of OR-clauses and XOR-clauses.

Example.

$$(\neg x_1 \lor x_2) \land (\neg x_2 \lor x_4 \lor \neg x_5)) \land (x_1 \oplus x_5 \oplus x_6)$$

From the algebraic model to the CNF-XOR model

Variables in \mathbb{F}_2 : $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6$.

$$\mathbf{x}_1 + \mathbf{x}_2 \cdot \mathbf{x}_4 + \mathbf{x}_5 \cdot \mathbf{x}_6 + 1 = 0$$
 $\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_4 + \mathbf{x}_5 + 1 = 0$
 $\mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_2 \cdot \mathbf{x}_4 = 0$
 $\mathbf{x}_2 + \mathbf{x}_5 + \mathbf{x}_2 \cdot \mathbf{x}_4 + \mathbf{x}_5 \cdot \mathbf{x}_6 + 1 = 0$
 $\mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_6 + 1 = 0$

Propositional variables: x_1 , x_2 , x_3 , x_4 , x_5 , x_6 with truth values in {TRUE, FALSE}

$$(x_1 \oplus (x_2 \wedge x_4) \oplus (x_5 \wedge x_6)) \wedge (x_1 \oplus x_2 \oplus x_4 \oplus x_5) \wedge (x_3 \oplus x_4 \oplus (x_2 \wedge x_4) \oplus \top) \wedge (x_2 \oplus x_5 \oplus (x_2 \wedge x_4) \oplus (x_5 \wedge x_6)) \wedge (x_3 \oplus x_4 \oplus x_6)$$

Multiplication in \mathbb{F}_2 (·) becomes the logical AND operation (\wedge) and addition in \mathbb{F}_2 (+) becomes the logical XOR (\oplus).

From the algebraic model to the CNF-XOR model

Add new variable $x_{2,4}$ to substitute the conjunction $x_2 \wedge x_4$.

Transform the constraint

$$x_{2,4} \Leftrightarrow (x_2 \wedge x_4)$$

into CNF.

From the algebraic model to the CNF-XOR model

Propositional variables:

 x_1 , x_2 , x_3 , x_4 , x_5 , x_6 , $x_{2,4}$, $x_{5,6}$ with truth values in $\{TRUE, FALSE\}$

$$(x_{1} \oplus (x_{2} \wedge x_{4}) \oplus (x_{5} \wedge x_{6})) \wedge (x_{1} \oplus x_{2} \oplus x_{4} \oplus x_{5}) \wedge (x_{3} \oplus x_{4} \oplus (x_{2} \wedge x_{4}) \oplus \top) \wedge (x_{2} \oplus x_{5} \oplus (x_{2} \wedge x_{4}) \oplus (x_{5} \wedge x_{6})) \wedge (x_{3} \oplus x_{4} \oplus x_{6})$$

$$(\neg x_{2,4} \lor x_{2}) \land (\neg x_{2,4} \lor x_{4}) \land (\neg x_{2,4} \lor x_{4}) \land (\neg x_{5,6} \lor x_{5}) \land (\neg x_{5,6} \lor x_{6}) \land (\neg x_{5,6} \lor x_{6}) \land (x_{1} \oplus x_{2,4} \oplus x_{5,6}) \land (x_{1} \oplus x_{2} \oplus x_{4} \oplus x_{5}) \land (x_{3} \oplus x_{4} \oplus x_{2,4} \oplus \top) \land (x_{2} \oplus x_{5} \oplus x_{2,4} \oplus x_{5,6}) \land (x_{3} \oplus x_{4} \oplus x_{6})$$

WDSat algorithm

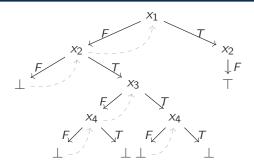
Based on the Davis-Putnam-Logemann-Loveland (DPLL) algorithm.

Building a binary search-tree of height equivalent (at worst) to the number of variables.

WDSat algorithm

Based on the Davis-Putnam-Logemann-Loveland (\mathtt{DPLL}) algorithm.

Building a binary search-tree of height equivalent (at worst) to the number of variables.



WDSat - Three reasoning modules

CNF module

Performs unit propagation on CNF-clauses.

XORSET module

Performs unit propagation on the parity constraints. When all except one literal in a XOR clause is assigned, we infer the truth value of the last literal according to parity reasoning.

XORGAUSS module

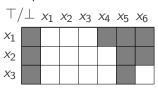
Performs Gaussian elimination on the XOR system.

WDSat - XORGAUSS module

- All variables in an XOR-clause belong to the same equivalence class.
- We choose one literal from the equivalence class to be the representative.
- Property: a representative of an equivalence class will never be present in another equivalence class.

XOR-clauses	Equivalence classes		
	$x_1 \Leftrightarrow x_4 \oplus x_5 \oplus x_6 \oplus \top$		
$x_1 \oplus x_2 \oplus x_4 \oplus \top$	$x_2 \Leftrightarrow x_5 \oplus x_6 \oplus \top$		
$x_2 \oplus x_3 \oplus x_6 \oplus \top$	$x_3 \Leftrightarrow x_5 \oplus \top$		

• Implementation: A compact EC structure.

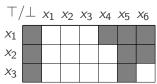


WDSat - XORGAUSS module

- All variables in an XOR-clause belong to the same equivalence class.
- We choose one literal from the equivalence class to be the representative.
- Property: a representative of an equivalence class will never be present in another equivalence class.

	XOR-clauses	Equivalence classes
	$x_1 \oplus x_4 \oplus x_5 \oplus x_6$	$x_1 \Leftrightarrow x_4 \oplus x_5 \oplus x_6 \oplus \top$
$x_2 \oplus x_5 \oplus x_6$	$x_1 \oplus x_2 \oplus x_4 \oplus \top$	$x_2 \Leftrightarrow x_5 \oplus x_6 \oplus \top$
	$x_2 \oplus x_3 \oplus x_6 \oplus \top$	$x_3 \Leftrightarrow x_5 \oplus \top$

• Implementation: A compact *EC* structure.

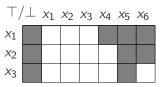


WDSat - XORGAUSS module

- All variables in an XOR-clause belong to the same equivalence class.
- We choose one literal from the equivalence class to be the representative.
- Property: a representative of an equivalence class will never be present in another equivalence class.

	XOR-clauses	Equivalence classes		
		$x_1 \Leftrightarrow x_4 \oplus x_5 \oplus x_6 \oplus \top$		
$x_2 \oplus x_5 \oplus x_6$	$x_1 \oplus x_2 \oplus x_4 \oplus \top$	$x_2 \Leftrightarrow x_5 \oplus x_6 \oplus \top$		
$x_3 \oplus x_5$	$x_2 \oplus x_3 \oplus x_6 \oplus \top$	$x_3 \Leftrightarrow x_5 \oplus \top$		

• Implementation: A compact *EC* structure.



Motivation

The case where a possible cancellation of terms is overseen due to the CNF-XOR form.

Boolean polynomial system

$$\mathbf{x}_1 + \mathbf{x}_2 \mathbf{x}_3 + \mathbf{x}_5 + \mathbf{x}_6 + 1 = 0$$

 $\mathbf{x}_3 + \mathbf{x}_5 + \mathbf{x}_6 = 0$.

CNF-XOR formula

$$\neg x_{2,3} \lor x_2$$

$$\neg x_{2,3} \lor x_3$$

$$\neg x_2 \lor \neg x_3 \lor x_{2,3}$$

$$x_1 \oplus x_{2,3} \oplus x_5 \oplus x_6$$

$$x_3 \oplus x_5 \oplus x_6 \oplus \top.$$

Motivation

The case where a possible cancellation of terms is overseen due to the CNF-XOR form.

Boolean polynomial system

$$\mathbf{x}_1 + \mathbf{x}_2 \mathbf{x}_3 + \mathbf{x}_5 + \mathbf{x}_6 + 1 = 0$$

 $\mathbf{x}_3 + \mathbf{x}_5 + \mathbf{x}_6 = 0$.

CNF-XOR formula

$$\neg x_{2,3} \lor x_2
\neg x_{2,3} \lor x_3
\neg x_2 \lor \neg x_3 \lor x_{2,3}
x_1 \oplus x_{2,3} \oplus x_5 \oplus x_6
x_3 \oplus x_5 \oplus x_6 \oplus \top.$$

Set \mathbf{x}_2 to 1 / Set x_2 to \top

Motivation

The case where a possible cancellation of terms is overseen due to the CNF-XOR form.

Boolean polynomial system

$$\mathbf{x}_1 + \mathbf{x}_2 \mathbf{x}_3 + \mathbf{x}_5 + \mathbf{x}_6 + 1 = 0$$

 $\mathbf{x}_3 + \mathbf{x}_5 + \mathbf{x}_6 = 0$.

CNF-XOR formula

Set \mathbf{x}_2 to 1 / Set x_2 to \top

Motivation

The case where a possible cancellation of terms is overseen due to the CNF-XOR form.

Boolean polynomial system

$$\mathbf{x}_1 + \mathbf{x}_3 + \mathbf{x}_5 + \mathbf{x}_6 + 1 = 0$$

 $\mathbf{x}_3 + \mathbf{x}_5 + \mathbf{x}_6 = 0$.

CNF-XOR formula

$$\neg x_{2,3} \lor x_3$$
$$\neg x_3 \lor x_{2,3}$$
$$x_1 \oplus x_{2,3} \oplus x_5 \oplus x_6$$
$$x_3 \oplus x_5 \oplus x_6 \oplus \top.$$

Motivation

The case where a possible cancellation of terms is overseen due to the CNF-XOR form.

Boolean polynomial system

$$\mathbf{x}_1 + \mathbf{x}_3 + \mathbf{x}_5 + \mathbf{x}_6 + 1 = 0$$

 $\mathbf{x}_3 + \mathbf{x}_5 + \mathbf{x}_6 = 0$.

$$\mathbf{x}_1 = 1$$

CNF-XOR formula

$$\neg x_{2,3} \lor x_3$$
$$\neg x_3 \lor x_{2,3}$$
$$x_1 \oplus x_{2,3} \oplus x_5 \oplus x_6$$
$$x_3 \oplus x_5 \oplus x_6 \oplus \top.$$

Define the following rule:

$$\frac{x_1 \quad x_{1,2} \Leftrightarrow (x_1 \land x_2)}{x_{1,2} \Leftrightarrow x_2}.$$

If x_1 is set to TRUE, replace all occurrences of $x_{1,2}$ by x_2 .

Branching variables

Our DPLL-based algorithm only makes assignments on variables that are present in the initial Boolean polynomial system. Substitution variables are propagated as a consequence.

Branching variables

Our DPLL-based algorithm only makes assignments on variables that are present in the initial Boolean polynomial system. Substitution variables are propagated as a consequence.

Order of branching variables?

Branching variables

MVC preprocessing technique

$$x_{1} + x_{2}x_{3} + x_{4} + x_{4}x_{5} = 0$$

$$x_{1} + x_{2}x_{3} = 0$$

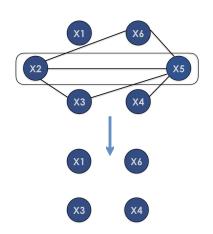
$$x_{1} + x_{3}x_{5} + x_{6} = 0$$

$$x_{1} + x_{2}x_{5}x_{6} + x_{6} = 0$$

$$x_{1} + x_{3} = 0$$

$$x_{1} + x_{3} + x_{6} = 0$$

$$x_{1} = 0.$$



Using symmetries

Gaudry (2008)

Symmetrization

Rewrite S_m in terms of the elementary symmetric polynomials

$$\mathbf{e}_{1} = \sum_{1 \leq i_{1} \leq m} X_{i_{1}},$$

$$\mathbf{e}_{2} = \sum_{1 \leq i_{1}, i_{2} \leq m} X_{i_{1}} X_{i_{2}},$$

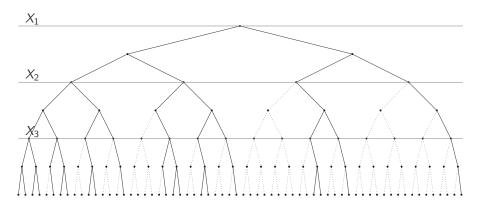
$$\cdots$$

$$\mathbf{e}_{m} = \prod_{1 \leq i \leq m} X_{i}.$$

WDSat - breaking symmetry

- Exploit the symmetry of Semaev's summation polynomials: when $X_1, ..., X_m$ is a solution, all permutations of this set are a solution as well.
- Establish the following constraint $X_1 \leq X_2 \leq \ldots \leq X_m$.
- Implement constraint in the solver using a tree-pruning-like technique.
- Optimize the complexity by a factor of m!.

WDSat - breaking symmetry



Experimental results

Third summation polynomial n = 42, l = 20

Solving approach	SAT		UNSAT	
Solving approach	Runtime (s)	#Conflicts	Runtime (s)	#Conflicts
Gröbner	16.8	N/A	18.7	N/A
MiniSat	> 600		> 600	
Glucose	> 600		> 600	
MapleLCMDistChronoBT	> 600		> 600	
CaDiCaL	> 600		> 600	
CryptoMiniSat	29.0	226668	84.3	627539
WDSat+XG-EXT+MVC	4.2	27684	13.5	86152

Table: Comparing Gröbner basis and SAT-based approaches for solving the PDP. Running times are in seconds.

Experimental results

Fourth summation polynomial n = 19, l = 6

Solving approach	SAT		UNSAT	
Solving approach	Runtime (s)	#Conflicts	Runtime (s)	#Conflicts
Gröbner	229.3	N/A	229.4	N/A
MiniSat	239.7	1840190	517.0	3433304
Glucose	189.2	1527158	274.8	2056575
MapleLCMDistChronoBT	655.1	4035131	918.7	5378945
CaDiCaL	43.6	254194	141.3	629869
CryptoMiniSat	331.8	1791188	707.9	3416526
WDSat+br-sym	0.24	19166	0.63	44034

Table: Comparing Gröbner basis and SAT-based approaches for solving the PDP. Running times are in seconds.

Conclusion

- When solving the PDP for prime degree extension fields of \mathbb{F}_2 , Gröbner basis methods should be replaced with a SAT-based approach.
- Our CNF-XOR model with the dedicated SAT-solver, WDSAT, yields significantly faster running times than all other algebraic and SAT-based approaches.
- Extending the WDSAT solver with our symmetry breaking technique optimizes the resolution of the PDP by a factor of m!.

Perspectives

- Understand the complexity of CNF-XOR instance solving.
- Combine WDSAT with CDCL techniques.
- Use WDSAT for attacks on other cryptosystems.
- Adapt our PCS implementation for meet-in-the-middle attacks on isogeny-based cryptosystems.

Open source code

Parity (XOR) Reasoning for the Index Calculus Attack

https://github.com/mtrimoska/WDSat

A SAT-Based Approach for Index Calculus on Binary Elliptic Curves

https://github.com/mtrimoska/EC-Index-Calculus-Benchmarks

Time-Memory Trade-offs for Parallel Collision Search Algorithms

https://github.com/mtrimoska/PCS