Shifting our knowledge of MQ-Sign security

Lars Ran

Radboud University

Monika Trimoska

Eindhoven University of Technology

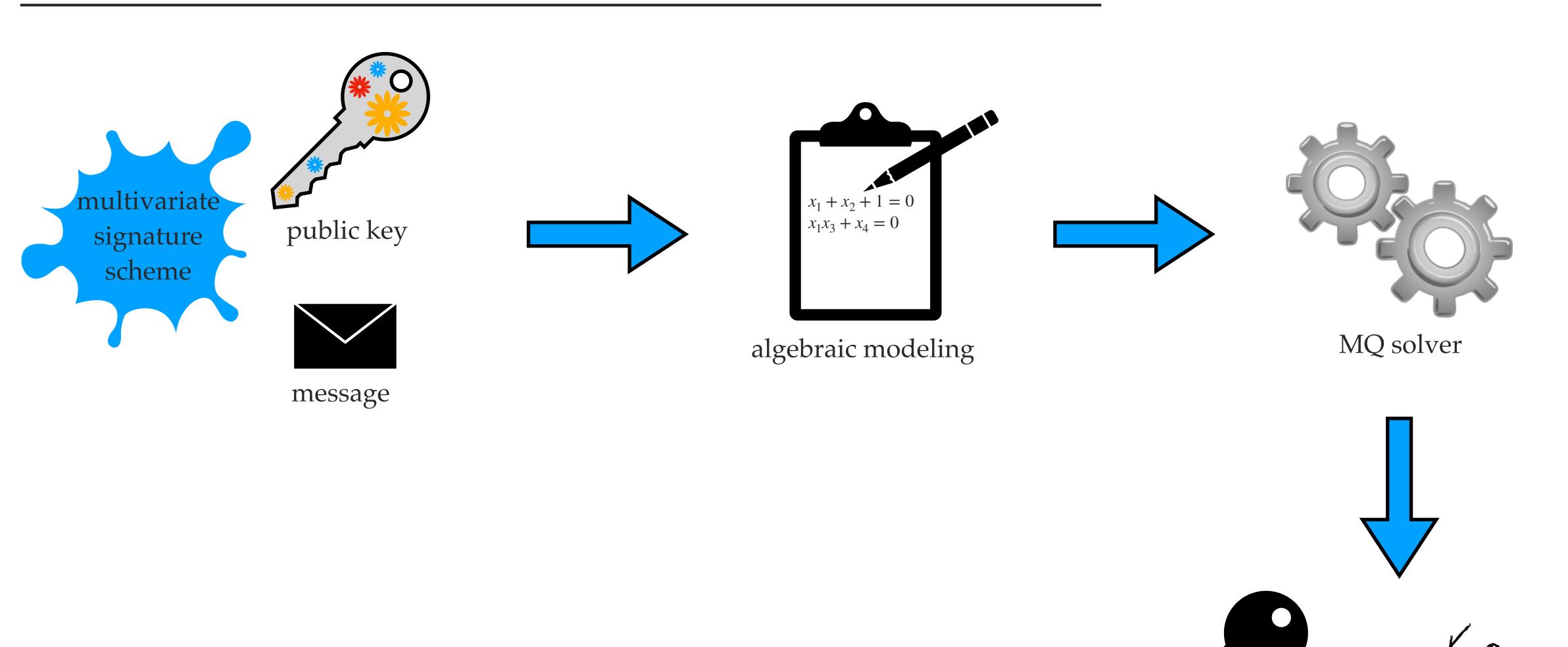
PQCrypto 2025 April 8, Taipei, Taiwan

*Animated version at https://mtrimoska.com/slides/PQCrypto25/#0

→ Round 2 candidate in the Korean post-quantum cryptography competition (K門C).

- UOV-based digital signature algorithm with additional structure in the central map.
- → This work:
 - A universal forgery attack (not practical, but below the security level).
 - Algebraic cryptanalysis.

Algebraic cryptanalysis



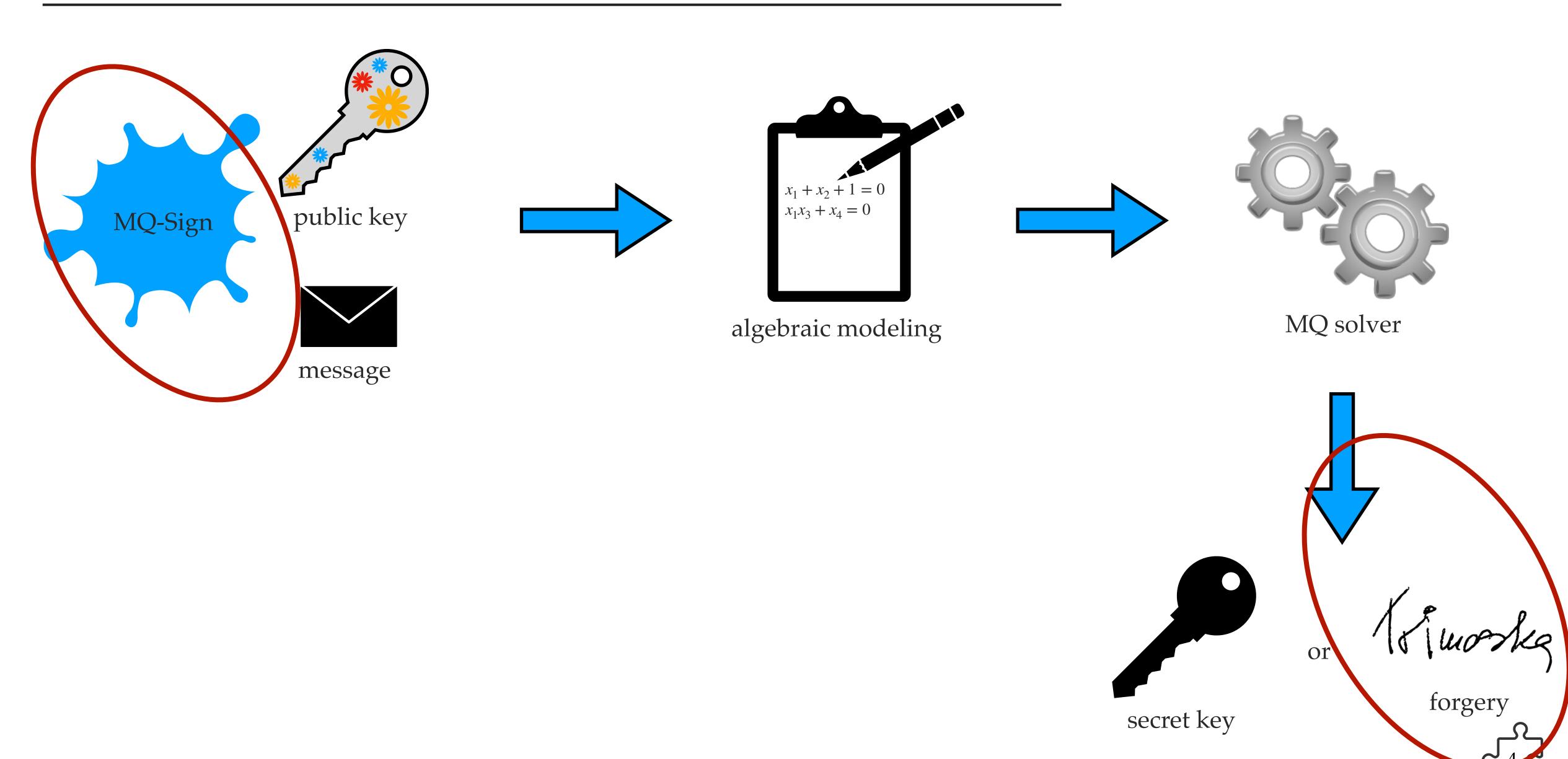
Kluoska

forgery

or

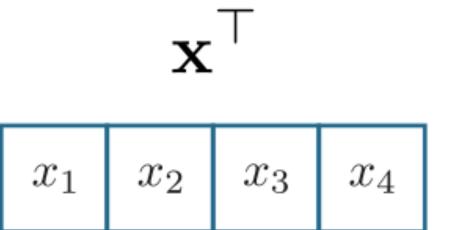
secret key

Algebraic cryptanalysis



Matrix representation of quadratic forms

Quadratic form: $f(\mathbf{x}) = \sum \gamma_{ij} x_i x_j$



$\gamma_{1,1}$	$\frac{\gamma_{1,2}}{2}$	$\frac{\gamma_{1,3}}{2}$	$\frac{\gamma_{1,4}}{2}$
$\frac{\gamma_{2,1}}{2}$	$\gamma_{2,2}$	$\frac{\gamma_{2,3}}{2}$	$\frac{\gamma_{2,4}}{2}$
$\frac{\gamma_{3,1}}{2}$	$\frac{\gamma_{3,2}}{2}$	$\gamma_{3,3}$	$\frac{\gamma_{3,4}}{2}$
$\frac{\gamma_{4,1}}{2}$	$\frac{\gamma_{4,2}}{2}$	$\frac{\gamma_{4,3}}{2}$	$\gamma_{4,4}$

 ${f X}$

 x_1

 x_2

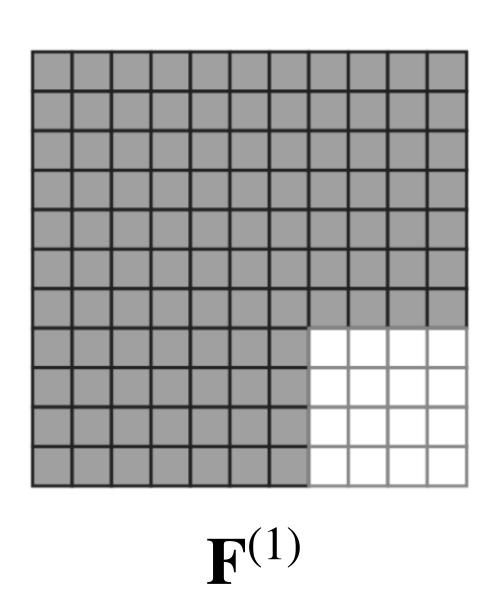
 x_3

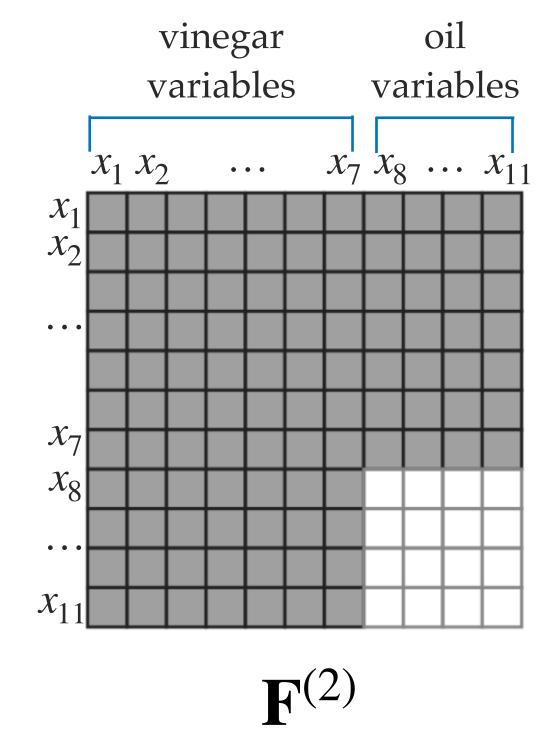
 x_4

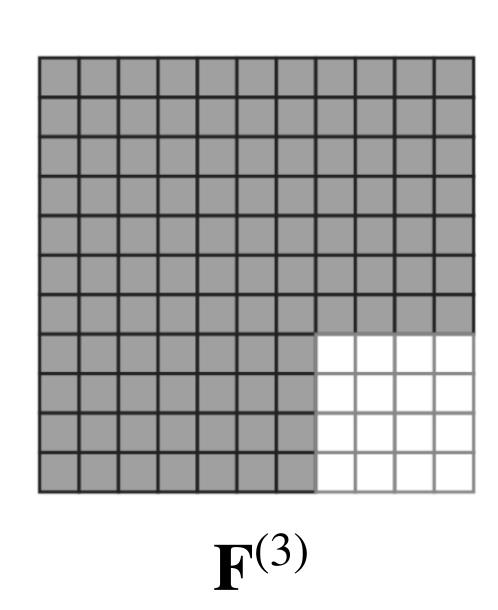
so with $\mathbf{x} = (x_1, ..., x_n)$, we get $\mathbf{x}^T \mathbf{F} \mathbf{x}$.

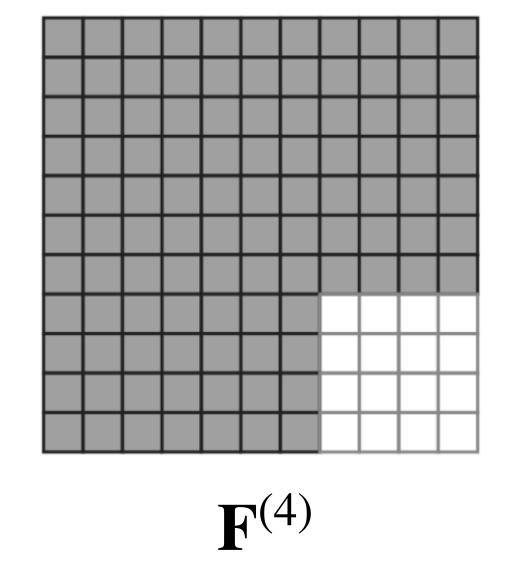
The UOV central map

Toy example: v = 7, m = 4

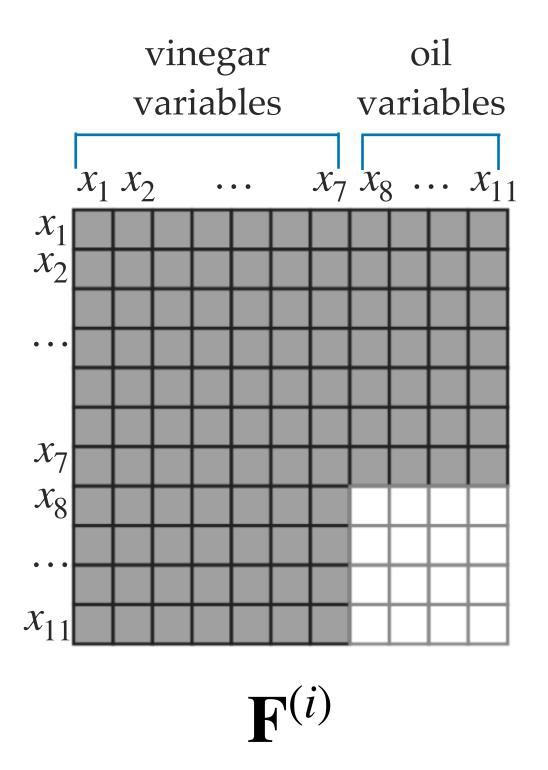


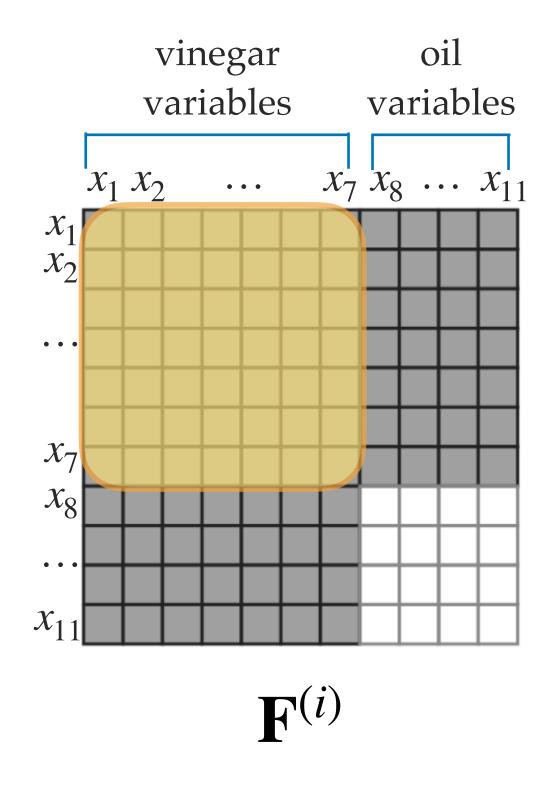


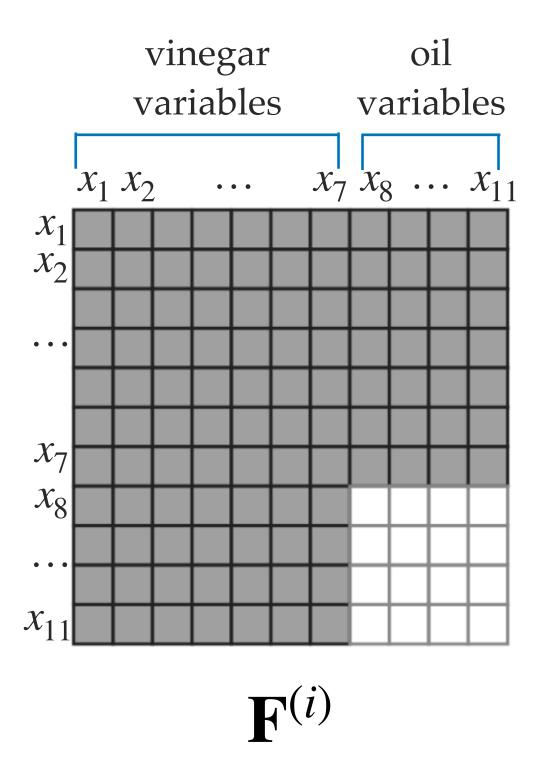


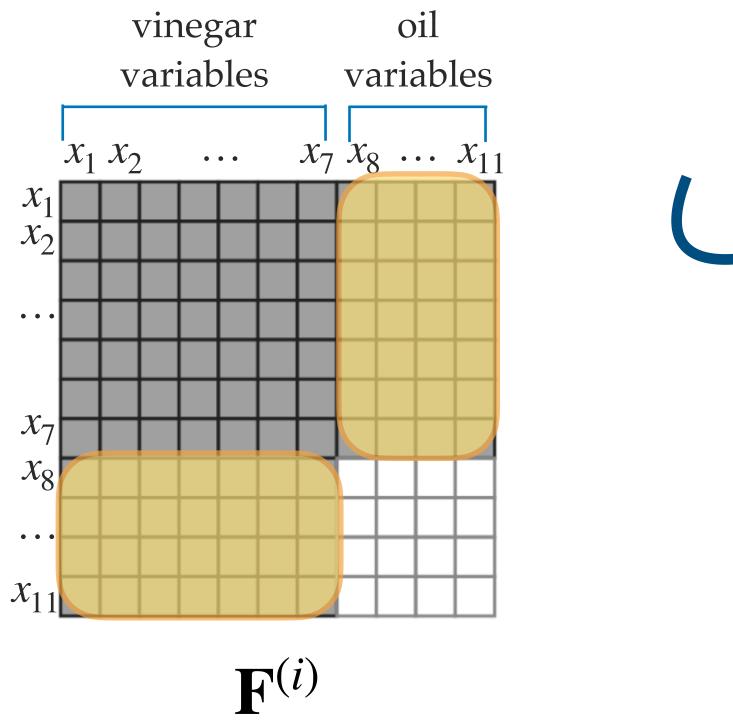


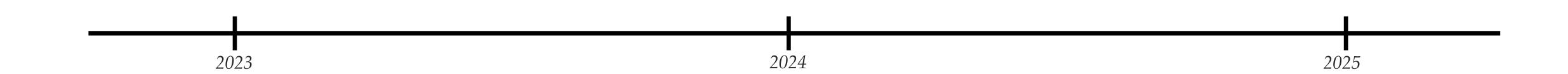
^{*}Grayed areas represent the entries that are possibly nonzero; blank areas denote the zero entries;



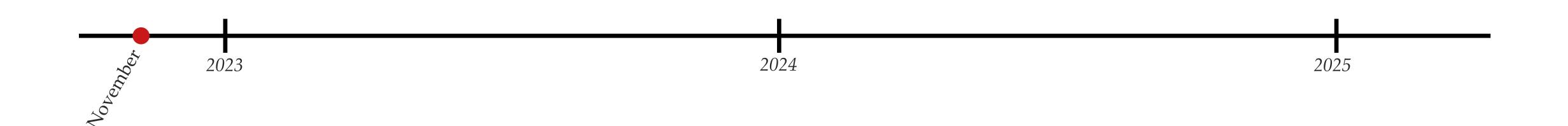




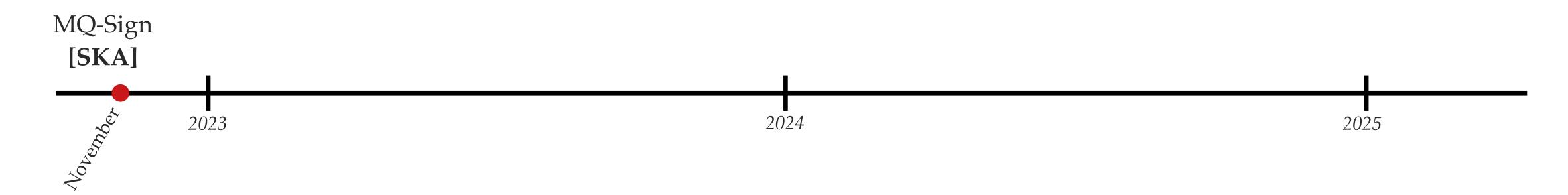




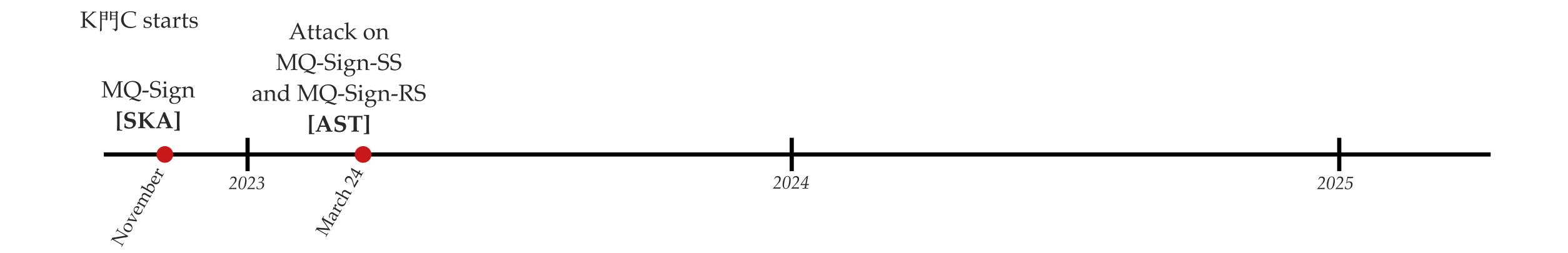
K門C starts



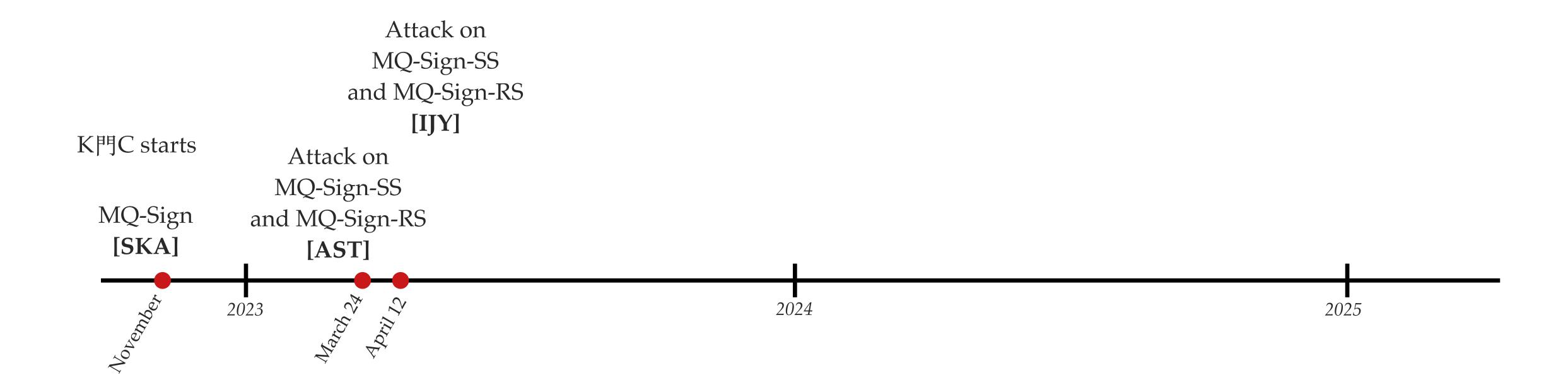
K門C starts



[SKA] Shim, Kim, An. MQ-Sign. A New Post-Quantum Signature Scheme based on Multivariate Quadratic Equations: Shorter and Faster. (2022)

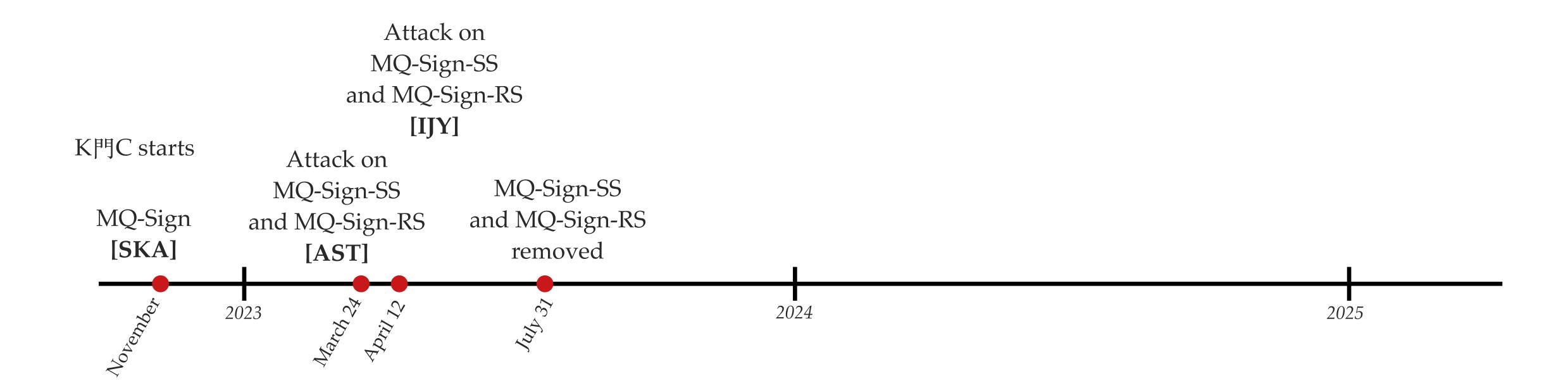


[SKA] Shim, Kim, An. MQ-Sign. A New Post-Quantum Signature Scheme based on Multivariate Quadratic Equations: Shorter and Faster. (2022) [AST] Aulbach, Samardjiska, Trimoska. Practical key-recovery attack on MQ-Sign and more. (2023)



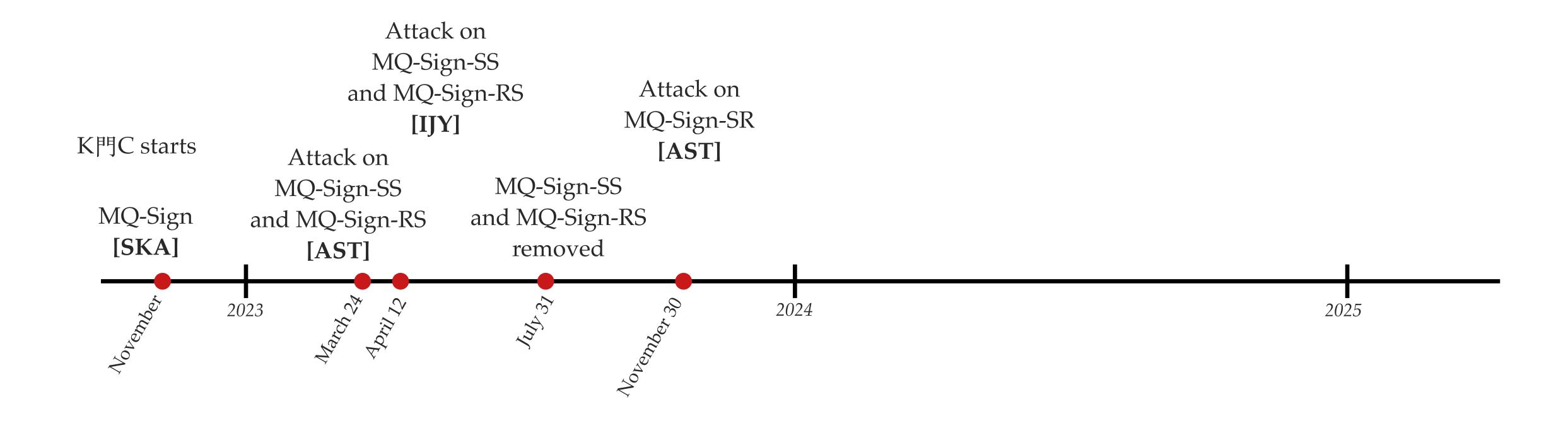
[SKA] Shim, Kim, An. MQ-Sign. A New Post-Quantum Signature Scheme based on Multivariate Quadratic Equations: Shorter and Faster. (2022)

[AST] Aulbach, Samardjiska, Trimoska. Practical key-recovery attack on MQ-Sign and more. (2023)



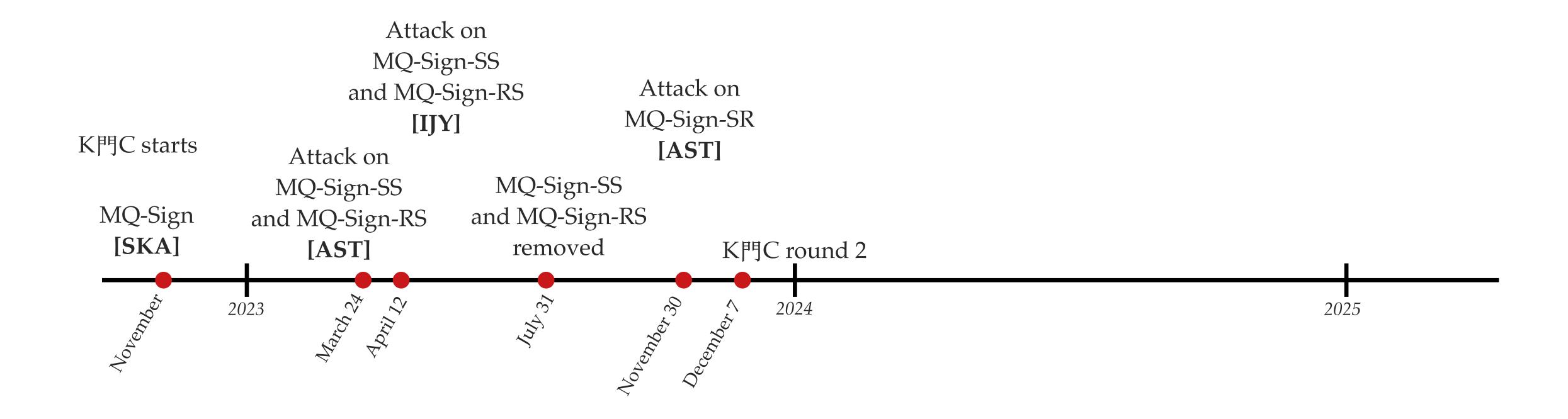
[SKA] Shim, Kim, An. MQ-Sign. A New Post-Quantum Signature Scheme based on Multivariate Quadratic Equations: Shorter and Faster. (2022)

[AST] Aulbach, Samardjiska, Trimoska. Practical key-recovery attack on MQ-Sign and more. (2023)



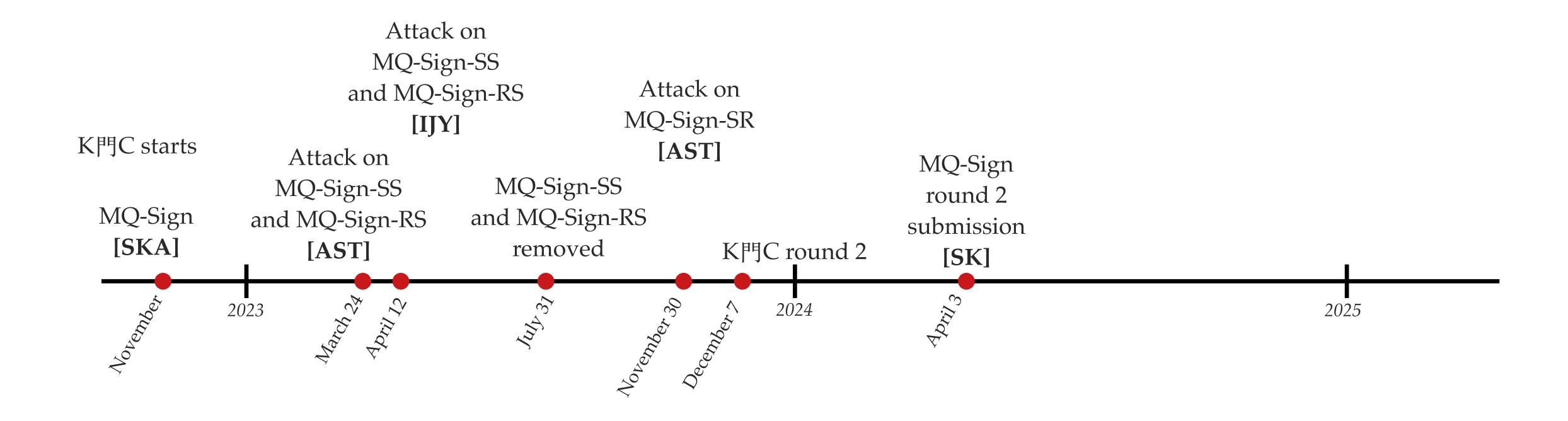
[SKA] Shim, Kim, An. MQ-Sign. A New Post-Quantum Signature Scheme based on Multivariate Quadratic Equations: Shorter and Faster. (2022)

[AST] Aulbach, Samardjiska, Trimoska. Practical key-recovery attack on MQ-Sign and more. (2023)



[SKA] Shim, Kim, An. MQ-Sign. A New Post-Quantum Signature Scheme based on Multivariate Quadratic Equations: Shorter and Faster. (2022)

[AST] Aulbach, Samardjiska, Trimoska. Practical key-recovery attack on MQ-Sign and more. (2023)



[SKA] Shim, Kim, An. MQ-Sign. A New Post-Quantum Signature Scheme based on Multivariate Quadratic Equations: Shorter and Faster. (2022)

[AST] Aulbach, Samardjiska, Trimoska. Practical key-recovery attack on MQ-Sign and more. (2023)

[IJY] Ikematsu, Jo, Yasuda. A security analysis on MQ-Sign. (2023)

[SK] Shim, Kwon. MQ-Sign. A New Post-Quantum Signature Scheme based on Multivariate Quadratic Equations: Shorter and Faster. (2024)

MQ-Sign variants

- → MQ-Sign-LR
 - The vinegar-oil part is random.
 - The vinegar-vinegar part is defined as

$$\begin{pmatrix} x_1 & x_2 & \dots & x_v \\ x_v & x_1 & \dots & x_{v-1} \\ \dots & \dots & \dots & \dots \\ x_{v-m+2} & x_{v-m+3} & \dots & x_{v-m+1} \end{pmatrix} \cdot \begin{pmatrix} L_1 \\ L_2 \\ \dots \\ L_v \end{pmatrix} = \begin{pmatrix} f^{(1)} \\ f^{(2)} \\ \dots \\ f^{(m)} \end{pmatrix},$$

where
$$L_i = \sum_{j=1}^{v} \gamma_{ij} x_{j}$$
, for $i \in \{1, ..., v\}$.

MQ-Sign variants

- → MQ-Sign-LR
 - The vinegar-oil part is random.
 - The vinegar-vinegar part is defined as

$$\begin{pmatrix} x_1 & x_2 & \dots & x_v \\ x_v & x_1 & \dots & x_{v-1} \\ \dots & \dots & \dots & \dots \\ x_{v-m+2} & x_{v-m+3} & \dots & x_{v-m+1} \end{pmatrix} \cdot \begin{pmatrix} L_1 \\ L_2 \\ \dots \\ L_v \end{pmatrix} = \begin{pmatrix} f^{(1)} \\ f^{(2)} \\ \dots \\ f^{(m)} \end{pmatrix},$$

where
$$L_i = \sum_{j=1}^{v} \gamma_{ij} x_{j'}$$
 for $i \in \{1, ..., v\}$.

- → MQ-Sign-RR
 - A conservative variant where both the vinegar-vinegar and the vinegar-oil parts are random.
 - Equivalent to traditional UOV up to implementation choices.

MQ-Sign variants

- → MQ-Sign-LR

 → The vinegar-oil part is random.
 - The vinegar-vinegar part is defined as

$$\begin{pmatrix} x_1 & x_2 & \dots & x_v \\ x_v & x_1 & \dots & x_{v-1} \\ \dots & \dots & \dots & \dots \\ x_{v-m+2} & x_{v-m+3} & \dots & x_{v-m+1} \end{pmatrix} \cdot \begin{pmatrix} L_1 \\ L_2 \\ \dots \\ L_v \end{pmatrix} = \begin{pmatrix} f^{(1)} \\ f^{(2)} \\ \dots \\ f^{(m)} \end{pmatrix},$$

where
$$L_i = \sum_{j=1}^{v} \gamma_{ij} x_{j'}$$
 for $i \in \{1, ..., v\}$.

- MQ-Sign-RR
 - A conservative variant where both the vinegar-vinegar and the vinegar-oil parts are random.
 - Equivalent to traditional UOV up to implementation choices.

Equivalent secret keys

For any instance of a UOV secret key (f', S'), there exists an equivalent secret key (f, S) with

$$\mathbf{S} = \begin{pmatrix} \mathbf{I}_{v \times v} & \mathbf{S}_1 \\ \mathbf{0}_{m \times v} & \mathbf{I}_{m \times m} \end{pmatrix}.$$

• A key of this *equivalent keys* form is used for efficiency (fewer entries in **S**).

$$\begin{pmatrix} \mathbf{P}_1^{(k)} & \mathbf{P}_2^{(k)} \\ 0 & \mathbf{P}_4^{(k)} \end{pmatrix} = \begin{pmatrix} \mathbf{I} & 0 \\ \mathbf{S}_1^{\mathsf{T}} & \mathbf{I} \end{pmatrix} \begin{pmatrix} \mathbf{F}_1^{(k)} & \mathbf{F}_2^{(k)} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{I} & \mathbf{S}_1 \\ 0 & \mathbf{I} \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{P}_1^{(k)} & \mathbf{P}_2^{(k)} \\ 0 & \mathbf{P}_4^{(k)} \end{pmatrix} = \begin{pmatrix} \mathbf{I} & 0 \\ \mathbf{S}_1^{\mathsf{T}} & \mathbf{I} \end{pmatrix} \begin{pmatrix} \mathbf{F}_1^{(k)} & \mathbf{F}_2^{(k)} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{I} & \mathbf{S}_1 \\ 0 & \mathbf{I} \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{P}_1^{(k)} & \mathbf{P}_2^{(k)} \\ 0 & \mathbf{P}_4^{(k)} \end{pmatrix} = \begin{pmatrix} \mathbf{F}_1^{(k)} & (\mathbf{F}_1^{(k)} + \mathbf{F}_1^{(k)})\mathbf{S}_1 + \mathbf{F}_2^{(k)} \\ 0 & \mathsf{Upper}(\mathbf{S}_1^\mathsf{T} \mathbf{F}_1^{(k)} \mathbf{S}_1 + \mathbf{S}_1^\mathsf{T} \mathbf{F}_2^{(k)}) \end{pmatrix}$$



$$\begin{pmatrix} \mathbf{P}_1^{(k)} & \mathbf{P}_2^{(k)} \\ 0 & \mathbf{P}_4^{(k)} \end{pmatrix} = \begin{pmatrix} \mathbf{I} & 0 \\ \mathbf{S}_1^{\mathsf{T}} & \mathbf{I} \end{pmatrix} \begin{pmatrix} \mathbf{F}_1^{(k)} & \mathbf{F}_2^{(k)} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{I} & \mathbf{S}_1 \\ 0 & \mathbf{I} \end{pmatrix}$$

$$\begin{pmatrix}
\mathbf{P}_{1}^{(k)} & \mathbf{P}_{2}^{(k)} \\
0 & \mathbf{P}_{4}^{(k)}
\end{pmatrix} = \begin{pmatrix}
\mathbf{F}_{1}^{(k)} & (\mathbf{F}_{1}^{(k)} + \mathbf{F}_{1}^{(k)\top})\mathbf{S}_{1} + \mathbf{F}_{2}^{(k)} \\
0 & \text{Upper}(\mathbf{S}_{1}^{\top}\mathbf{F}_{1}^{(k)}\mathbf{S}_{1} + \mathbf{S}_{1}^{\top}\mathbf{F}_{2}^{(k)})
\end{pmatrix}$$

Key generation $P = S^T F S$

$$\begin{pmatrix} \mathbf{P}_1^{(k)} & \mathbf{P}_2^{(k)} \\ 0 & \mathbf{P}_4^{(k)} \end{pmatrix} = \begin{pmatrix} \mathbf{I} & 0 \\ \mathbf{S}_1^{\mathsf{T}} & \mathbf{I} \end{pmatrix} \begin{pmatrix} \mathbf{F}_1^{(k)} & \mathbf{F}_2^{(k)} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{I} & \mathbf{S}_1 \\ 0 & \mathbf{I} \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{P}_1^{(k)} & \mathbf{P}_2^{(k)} \\ 0 & \mathbf{P}_4^{(k)} \end{pmatrix} = \begin{pmatrix} \mathbf{F}_1^{(k)} & (\mathbf{F}_1^{(k)} + \mathbf{F}_1^{(k)\top})\mathbf{S}_1 + \mathbf{F}_2^{(k)} \\ 0 & \text{Upper}(\mathbf{S}_1^{\mathsf{T}}\mathbf{F}_1^{(k)}\mathbf{S}_1 + \mathbf{S}_1^{\mathsf{T}}\mathbf{F}_2^{(k)}) \end{pmatrix}$$

The specific structure is only in the part of the central that is public (in the case where the equivalent keys optimisation is used).

Forging a signature for weak targets

Find \mathbf{x} s.t. $\mathbf{x}^T P^{(k)} \mathbf{x} = \mathbf{w}$, for all $1 \le k \le m$:

$$\begin{pmatrix} \mathbf{x}_{v}^{\mathsf{T}} & \mathbf{x}_{m}^{\mathsf{T}} \end{pmatrix} \begin{pmatrix} \mathbf{P}_{1}^{(k)} & \mathbf{P}_{2}^{(k)} \\ 0 & \mathbf{P}_{3}^{(k)} \end{pmatrix} \begin{pmatrix} \mathbf{x}_{v} \\ \mathbf{x}_{m} \end{pmatrix} = w_{k}$$

Find \mathbf{x} s.t. $\mathbf{x}^T P^{(k)} \mathbf{x} = \mathbf{w}$, for all $1 \le k \le m$:

$$\begin{pmatrix} \mathbf{x}_{v}^{\mathsf{T}} & \mathbf{x}_{m}^{\mathsf{T}} \end{pmatrix} \begin{pmatrix} \mathbf{P}_{1}^{(k)} & \mathbf{P}_{2}^{(k)} \\ 0 & \mathbf{P}_{3}^{(k)} \end{pmatrix} \begin{pmatrix} \mathbf{x}_{v} \\ \mathbf{x}_{m} \end{pmatrix} = w_{k}$$

$$\mathbf{x}_{v}^{\mathsf{T}}\mathbf{P}_{1}^{(k)}\mathbf{x}_{v} + \mathbf{x}_{v}^{\mathsf{T}}\mathbf{P}_{2}^{(k)}\mathbf{x}_{m} + \mathbf{x}_{m}^{\mathsf{T}}\mathbf{P}_{3}^{(k)}\mathbf{x}_{m} = w_{k}$$

Find \mathbf{x} s.t. $\mathbf{x}^T P^{(k)} \mathbf{x} = \mathbf{w}$, for all $1 \le k \le m$:

$$\begin{pmatrix} \mathbf{x}_{v}^{\mathsf{T}} & \mathbf{x}_{m}^{\mathsf{T}} \end{pmatrix} \begin{pmatrix} \mathbf{P}_{1}^{(k)} & \mathbf{P}_{2}^{(k)} \\ 0 & \mathbf{P}_{3}^{(k)} \end{pmatrix} \begin{pmatrix} \mathbf{x}_{v} \\ \mathbf{x}_{m} \end{pmatrix} = w_{k}$$

$$\mathbf{x}_{v}^{\mathsf{T}}\mathbf{P}_{1}^{(k)}\mathbf{x}_{v} + \mathbf{x}_{v}^{\mathsf{T}}\mathbf{P}_{2}^{(k)}\mathbf{x}_{m} + \mathbf{x}_{m}^{\mathsf{T}}\mathbf{P}_{3}^{(k)}\mathbf{x}_{m} = w_{k}$$

Fix \mathbf{x}_m to zero (rmk: we are expected to have a solution with good probability even if we fix another v-m variables).

Find \mathbf{x} s.t. $\mathbf{x}^T P^{(k)} \mathbf{x} = \mathbf{w}$, for all $1 \le k \le m$:

$$\begin{pmatrix} \mathbf{x}_{v}^{\mathsf{T}} & \mathbf{x}_{m}^{\mathsf{T}} \end{pmatrix} \begin{pmatrix} \mathbf{P}_{1}^{(k)} & \mathbf{P}_{2}^{(k)} \\ 0 & \mathbf{P}_{3}^{(k)} \end{pmatrix} \begin{pmatrix} \mathbf{x}_{v} \\ \mathbf{x}_{m} \end{pmatrix} = w_{k}$$

$$\mathbf{x}_{v}^{\mathsf{T}}\mathbf{P}_{1}^{(k)}\mathbf{x}_{v} + \mathbf{x}_{v}^{\mathsf{T}}\mathbf{P}_{2}^{(k)}\mathbf{x}_{m} + \mathbf{x}_{m}^{\mathsf{T}}\mathbf{P}_{3}^{(k)}\mathbf{x}_{m} = w_{k}$$

Fix \mathbf{x}_m to zero (rmk: we are expected to have a solution with good probability even if we fix another v-m variables).

$$\mathbf{x}_{v}^{\mathsf{T}}\mathbf{P}_{1}^{(k)}\mathbf{x}_{v} = w_{k}$$

where the $\mathbf{P}_{1}^{(k)}$ have a specific structure.

A toy example

$$v = 8, m = 4, \mathbf{w} = (0 \ 0 \ 0).$$

$$\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 \\ x_8 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 \\ x_7 & x_8 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ x_6 & x_7 & x_8 & x_1 & x_2 & x_3 & x_4 & x_5 \end{pmatrix}$$

$$\mathbf{w} = (0 \ 0 \ 0 \ 0).$$

$$\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 \\ x_8 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 \\ x_7 & x_8 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ x_6 & x_7 & x_8 & x_1 & x_2 & x_3 & x_4 & x_5 \end{pmatrix} \cdot \begin{pmatrix} L_1 \\ L_2 \\ L_3 \\ L_4 \\ L_5 \\ L_6 \\ L_7 \\ L_8 \end{pmatrix} = \begin{pmatrix} f^{(1)} \\ f^{(2)} \\ f^{(2)} \\ f^{(4)} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

A toy example

$$v = 8, m = 4, \mathbf{w} = (0 \ 0 \ 0).$$

$$\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 \\ x_8 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 \\ x_7 & x_8 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ x_6 & x_7 & x_8 & x_1 & x_2 & x_3 & x_4 & x_5 \end{pmatrix}$$

$$\begin{pmatrix}
x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 \\
x_8 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 \\
x_7 & x_8 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
x_6 & x_7 & x_8 & x_1 & x_2 & x_3 & x_4 & x_5
\end{pmatrix} \cdot \begin{pmatrix}
L_1 \\
L_2 \\
L_3 \\
L_4 \\
L_5 \\
L_6 \\
L_7 \\
L_8
\end{pmatrix} = \begin{pmatrix}
f^{(1)} \\
f^{(2)} \\
f^{(2)} \\
f^{(4)}
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
0 \\
0
\end{pmatrix}$$

$$x_1L_1 + x_2L_2 + x_3L_3 + x_4L_4 + x_5L_5 + x_6L_6 + x_7L_7 + x_8L_8 = 0$$

A toy example

$$v = 8, m = 4, \mathbf{w} = (0 \ 0 \ 0 \ 0).$$

$$\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 \\ x_8 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 \\ x_7 & x_8 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ x_6 & x_7 & x_8 & x_1 & x_2 & x_3 & x_4 & x_5 \end{pmatrix} \cdot \begin{pmatrix} L_1 \\ L_2 \\ L_3 \\ L_4 \\ L_5 \\ L_6 \\ L_7 \\ L_8 \end{pmatrix} = \begin{pmatrix} f^{(1)} \\ f^{(2)} \\ f^{(2)} \\ f^{(4)} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$x_1L_1 + x_2L_2 + x_3L_3 + x_4L_4 + x_5L_5 + x_6L_6 + x_7L_7 + x_8L_8 = 0$$

$$x_1L_2 + x_2L_3 + x_3L_4 + x_4L_5 + x_5L_6 + x_6L_7 + x_7L_8 + x_8L_1 = 0$$

$$v = 8, m = 4, \mathbf{w} = (0 \ 0 \ 0 \ 0).$$

$$\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 \\ x_8 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 \\ x_7 & x_8 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ x_6 & x_7 & x_8 & x_1 & x_2 & x_3 & x_4 & x_5 \end{pmatrix} \cdot \begin{pmatrix} L_1 \\ L_2 \\ L_3 \\ L_4 \\ L_5 \\ L_6 \\ L_7 \\ L_8 \end{pmatrix} = \begin{pmatrix} f^{(1)} \\ f^{(2)} \\ f^{(2)} \\ f^{(4)} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$x_1L_1 + x_2L_2 + x_3L_3 + x_4L_4 + x_5L_5 + x_6L_6 + x_7L_7 + x_8L_8 = 0$$

$$x_1L_2 + x_2L_3 + x_3L_4 + x_4L_5 + x_5L_6 + x_6L_7 + x_7L_8 + x_8L_1 = 0$$

$$x_1L_3 + x_2L_4 + x_3L_5 + x_4L_6 + x_5L_7 + x_6L_8 + x_7L_1 + x_8L_2 = 0$$

$$v = 8, m = 4, \mathbf{w} = (0 \ 0 \ 0 \ 0).$$

$$\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 \\ x_8 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 \\ x_7 & x_8 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ x_6 & x_7 & x_8 & x_1 & x_2 & x_3 & x_4 & x_5 \end{pmatrix} \cdot \begin{pmatrix} L_1 \\ L_2 \\ L_3 \\ L_4 \\ L_5 \\ L_6 \\ L_7 \\ L_8 \end{pmatrix} = \begin{pmatrix} f^{(1)} \\ f^{(2)} \\ f^{(2)} \\ f^{(4)} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$x_{1}L_{1} + x_{2}L_{2} + x_{3}L_{3} + x_{4}L_{4} + x_{5}L_{5} + x_{6}L_{6} + x_{7}L_{7} + x_{8}L_{8} = 0$$

$$x_{1}L_{2} + x_{2}L_{3} + x_{3}L_{4} + x_{4}L_{5} + x_{5}L_{6} + x_{6}L_{7} + x_{7}L_{8} + x_{8}L_{1} = 0$$

$$x_{1}L_{3} + x_{2}L_{4} + x_{3}L_{5} + x_{4}L_{6} + x_{5}L_{7} + x_{6}L_{8} + x_{7}L_{1} + x_{8}L_{2} = 0$$

$$x_{1}L_{4} + x_{2}L_{5} + x_{3}L_{6} + x_{4}L_{7} + x_{5}L_{8} + x_{6}L_{1} + x_{7}L_{2} + x_{8}L_{3} = 0$$

$$v = 8, m = 4, \mathbf{w} = (0 \ 0 \ 0).$$

$$\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 \\ x_8 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 \\ x_7 & x_8 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ x_6 & x_7 & x_8 & x_1 & x_2 & x_3 & x_4 & x_5 \end{pmatrix}$$

$$\begin{pmatrix}
x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 \\
x_8 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 \\
x_7 & x_8 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
x_6 & x_7 & x_8 & x_1 & x_2 & x_3 & x_4 & x_5
\end{pmatrix} \cdot \begin{pmatrix}
L_1 \\
L_2 \\
L_3 \\
L_4 \\
L_5 \\
L_6 \\
L_7 \\
L_8
\end{pmatrix} = \begin{pmatrix}
f^{(1)} \\
f^{(2)} \\
f^{(2)} \\
f^{(4)}
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
0 \\
0
\end{pmatrix}$$

$$x_1L_1 + x_2L_2 + x_3L_3 + x_4L_4 + x_5L_5 + x_6L_6 + x_7L_7 + x_8L_8 = 0$$

$$x_1L_2 + x_2L_3 + x_3L_4 + x_4L_5 + x_5L_6 + x_6L_7 + x_7L_8 + x_8L_1 = 0$$

$$x_1L_3 + x_2L_4 + x_3L_5 + x_4L_6 + x_5L_7 + x_6L_8 + x_7L_1 + x_8L_2 = 0$$

$$x_1L_4 + x_2L_5 + x_3L_6 + x_4L_7 + x_5L_8 + x_6L_1 + x_7L_2 + x_8L_3 = 0$$

$$v = 8, m = 4, \mathbf{w} = (0 \ 0 \ 0 \ 0).$$

$$egin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 \ x_8 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 \ x_7 & x_8 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \ x_6 & x_7 & x_8 & x_1 & x_2 & x_3 & x_4 & x_5 \ \end{pmatrix}$$

Will focus on this target, before showing the generalisation.

$$v = 8, m = 4, w = (0 \ 0 \ 0 \ 0).$$

$$\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 \\ x_8 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 \\ x_7 & x_8 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ x_6 & x_7 & x_8 & x_1 & x_2 & x_3 & x_4 & x_5 \end{pmatrix} \cdot \begin{pmatrix} L_1 \\ L_2 \\ L_3 \\ L_4 \\ L_5 \\ L_6 \\ L_7 \\ L_8 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$x_1L_1 + x_2L_2 + x_3L_3 + x_4L_4 + x_5L_5 + x_6L_6 + x_7L_7 + x_8L_8 = 0$$

$$x_1L_2 + x_2L_3 + x_3L_4 + x_4L_5 + x_5L_6 + x_6L_7 + x_7L_8 + x_8L_1 = 0$$

$$x_1L_3 + x_2L_4 + x_3L_5 + x_4L_6 + x_5L_7 + x_6L_8 + x_7L_1 + x_8L_2 = 0$$

$$x_1L_4 + x_2L_5 + x_3L_6 + x_4L_7 + x_5L_8 + x_6L_1 + x_7L_2 + x_8L_3 = 0$$

$$x_{1}L_{1} + x_{2}L_{2} + x_{3}L_{3} + x_{4}L_{4} + x_{5}L_{5} + x_{6}L_{6} + x_{7}L_{7} + x_{8}L_{8} = 0$$

$$x_{1}L_{2} + x_{2}L_{3} + x_{3}L_{4} + x_{4}L_{5} + x_{5}L_{6} + x_{6}L_{7} + x_{7}L_{8} + x_{8}L_{1} = 0$$

$$x_{1}L_{3} + x_{2}L_{4} + x_{3}L_{5} + x_{4}L_{6} + x_{5}L_{7} + x_{6}L_{8} + x_{7}L_{1} + x_{8}L_{2} = 0$$

$$x_{1}L_{4} + x_{2}L_{5} + x_{3}L_{6} + x_{4}L_{7} + x_{5}L_{8} + x_{6}L_{1} + x_{7}L_{2} + x_{8}L_{3} = 0$$

$$x_{1}L_{1} + x_{2}L_{2} + x_{3}L_{3} + x_{4}L_{4} + x_{5}L_{5} + x_{6}L_{6} + x_{7}L_{7} + x_{8}L_{8} = 0$$

$$x_{1}L_{2} + x_{2}L_{3} + x_{3}L_{4} + x_{4}L_{5} + x_{5}L_{6} + x_{6}L_{7} + x_{7}L_{8} + x_{8}L_{1} = 0$$

$$x_{1}L_{3} + x_{2}L_{4} + x_{3}L_{5} + x_{4}L_{6} + x_{5}L_{7} + x_{6}L_{8} + x_{7}L_{1} + x_{8}L_{2} = 0$$

$$x_{1}L_{4} + x_{2}L_{5} + x_{3}L_{6} + x_{4}L_{7} + x_{5}L_{8} + x_{6}L_{1} + x_{7}L_{2} + x_{8}L_{3} = 0$$

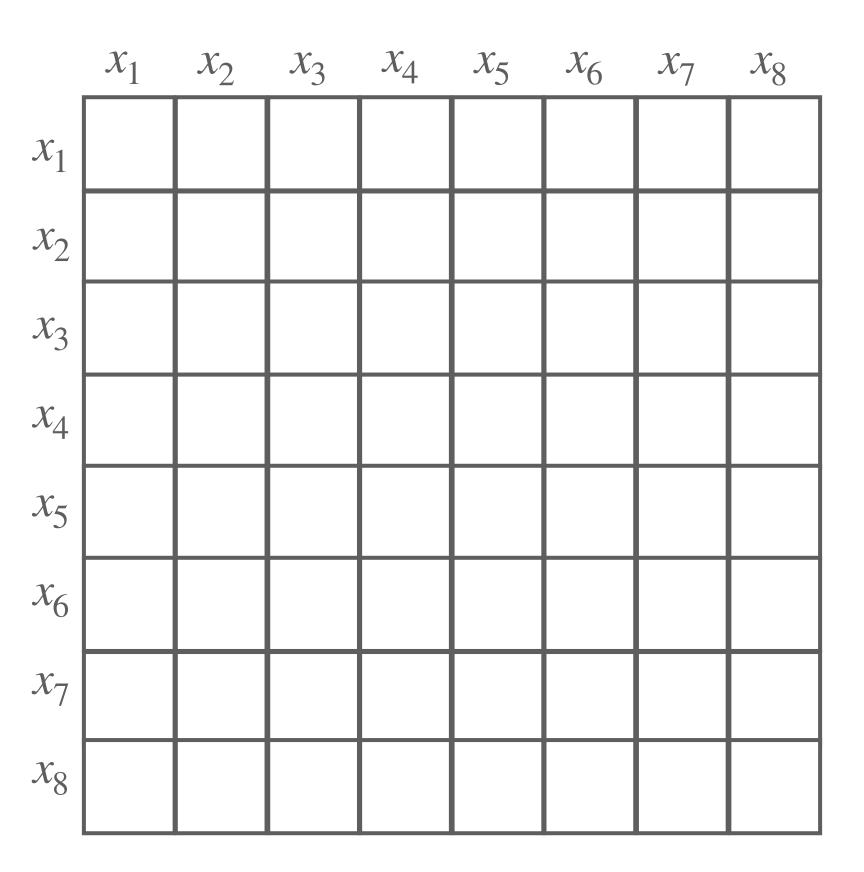
	x_1	x_2	x_3	\mathcal{X}_4	x_5	x_6	x_7	x_8
x_1								
x_2								
x_3								
x_4								
x_5								
x_6								
x_7								
x_8								

$$x_{1}L_{1} + x_{2}L_{2} + x_{3}L_{3} + x_{4}L_{4} + x_{5}L_{5} + x_{6}L_{6} + x_{7}L_{7} + x_{8}L_{8} = 0$$

$$x_{1}L_{2} + x_{2}L_{3} + x_{3}L_{4} + x_{4}L_{5} + x_{5}L_{6} + x_{6}L_{7} + x_{7}L_{8} + x_{8}L_{1} = 0$$

$$x_{1}L_{3} + x_{2}L_{4} + x_{3}L_{5} + x_{4}L_{6} + x_{5}L_{7} + x_{6}L_{8} + x_{7}L_{1} + x_{8}L_{2} = 0$$

$$x_{1}L_{4} + x_{2}L_{5} + x_{3}L_{6} + x_{4}L_{7} + x_{5}L_{8} + x_{6}L_{1} + x_{7}L_{2} + x_{8}L_{3} = 0$$



$$x_{1}L_{1} + x_{2}L_{2} + x_{3}L_{3} + x_{4}L_{4} + x_{5}L_{5} + x_{6}L_{6} + x_{7}L_{7} + x_{8}L_{8} = 0$$

$$x_{1}L_{2} + x_{2}L_{3} + x_{3}L_{4} + x_{4}L_{5} + x_{5}L_{6} + x_{6}L_{7} + x_{7}L_{8} + x_{8}L_{1} = 0$$

$$x_{1}L_{3} + x_{2}L_{4} + x_{3}L_{5} + x_{4}L_{6} + x_{5}L_{7} + x_{6}L_{8} + x_{7}L_{1} + x_{8}L_{2} = 0$$

$$x_{1}L_{4} + x_{2}L_{5} + x_{3}L_{6} + x_{4}L_{7} + x_{5}L_{8} + x_{6}L_{1} + x_{7}L_{2} + x_{8}L_{3} = 0$$

	x_1	x_2	x_3	\mathcal{X}_4	\mathcal{X}_{5}	x_6	x_7	x_8
x_1	$\gamma_{1,1}$							
x_2								
x_3								
x_4								
x_5								
x_6								
x_7								
x_8								

$$x_{1}L_{1} + x_{2}L_{2} + x_{3}L_{3} + x_{4}L_{4} + x_{5}L_{5} + x_{6}L_{6} + x_{7}L_{7} + x_{8}L_{8} = 0$$

$$x_{1}L_{2} + x_{2}L_{3} + x_{3}L_{4} + x_{4}L_{5} + x_{5}L_{6} + x_{6}L_{7} + x_{7}L_{8} + x_{8}L_{1} = 0$$

$$x_{1}L_{3} + x_{2}L_{4} + x_{3}L_{5} + x_{4}L_{6} + x_{5}L_{7} + x_{6}L_{8} + x_{7}L_{1} + x_{8}L_{2} = 0$$

$$x_{1}L_{4} + x_{2}L_{5} + x_{3}L_{6} + x_{4}L_{7} + x_{5}L_{8} + x_{6}L_{1} + x_{7}L_{2} + x_{8}L_{3} = 0$$

	x_1	x_2	x_3	\mathcal{X}_4	x_5	x_6	x_7	x_8
x_1	$\gamma_{1,1}$	$\gamma_{1,2}$						
x_2								
x_3								
x_4								
x_5								
x_6								
x_7								
x_8								

$$x_{1}L_{1} + x_{2}L_{2} + x_{3}L_{3} + x_{4}L_{4} + x_{5}L_{5} + x_{6}L_{6} + x_{7}L_{7} + x_{8}L_{8} = 0$$

$$x_{1}L_{2} + x_{2}L_{3} + x_{3}L_{4} + x_{4}L_{5} + x_{5}L_{6} + x_{6}L_{7} + x_{7}L_{8} + x_{8}L_{1} = 0$$

$$x_{1}L_{3} + x_{2}L_{4} + x_{3}L_{5} + x_{4}L_{6} + x_{5}L_{7} + x_{6}L_{8} + x_{7}L_{1} + x_{8}L_{2} = 0$$

$$x_{1}L_{4} + x_{2}L_{5} + x_{3}L_{6} + x_{4}L_{7} + x_{5}L_{8} + x_{6}L_{1} + x_{7}L_{2} + x_{8}L_{3} = 0$$

,	x_1	x_2	x_3	\mathcal{X}_4	x_5	x_6	x_7	x_8
x_1	$\gamma_{1,1}$	$\gamma_{1,2}$	$\gamma_{1,3}$					
x_2								
x_3								
x_4								
x_5								
x_6								
x_7								
x_8								

$$x_{1}L_{1} + x_{2}L_{2} + x_{3}L_{3} + x_{4}L_{4} + x_{5}L_{5} + x_{6}L_{6} + x_{7}L_{7} + x_{8}L_{8} = 0$$

$$x_{1}L_{2} + x_{2}L_{3} + x_{3}L_{4} + x_{4}L_{5} + x_{5}L_{6} + x_{6}L_{7} + x_{7}L_{8} + x_{8}L_{1} = 0$$

$$x_{1}L_{3} + x_{2}L_{4} + x_{3}L_{5} + x_{4}L_{6} + x_{5}L_{7} + x_{6}L_{8} + x_{7}L_{1} + x_{8}L_{2} = 0$$

$$x_{1}L_{4} + x_{2}L_{5} + x_{3}L_{6} + x_{4}L_{7} + x_{5}L_{8} + x_{6}L_{1} + x_{7}L_{2} + x_{8}L_{3} = 0$$

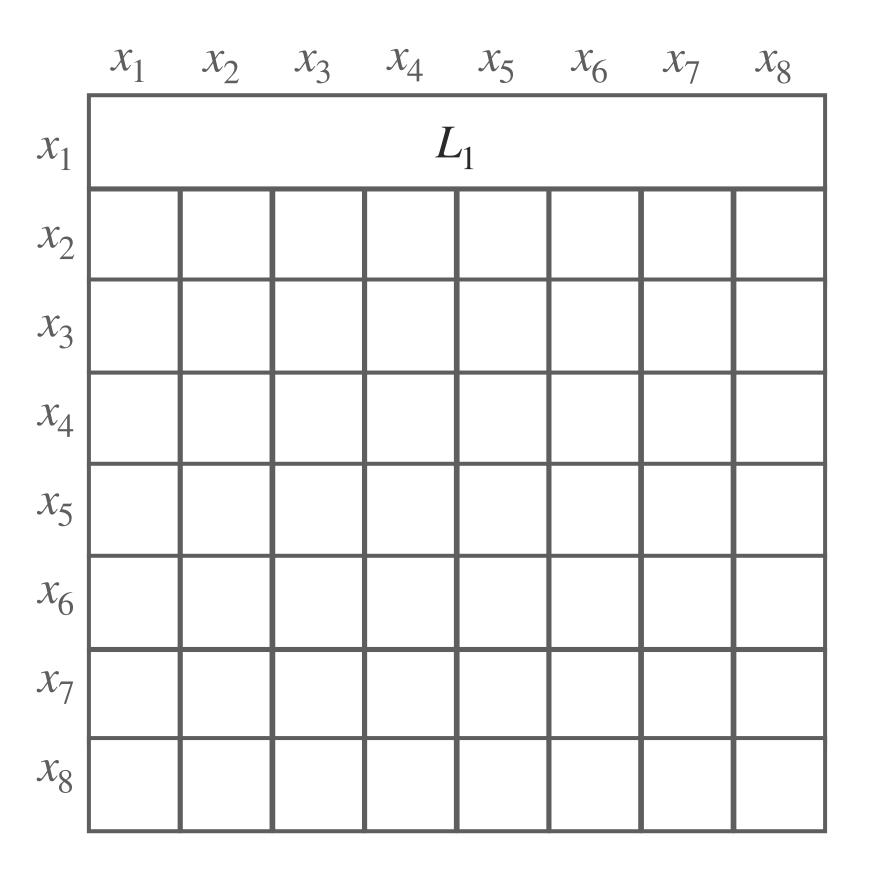
	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8
x_1	$\gamma_{1,1}$	$\gamma_{1,2}$	$\gamma_{1,3}$	$\gamma_{1,4}$	$\gamma_{1,5}$	γ _{1,6}	$\gamma_{1,7}$	$\gamma_{1,8}$
x_2								
x_3								
x_4								
x_5								
x_6								
x_7								
x_8								

$$x_{1}L_{1} + x_{2}L_{2} + x_{3}L_{3} + x_{4}L_{4} + x_{5}L_{5} + x_{6}L_{6} + x_{7}L_{7} + x_{8}L_{8} = 0$$

$$x_{1}L_{2} + x_{2}L_{3} + x_{3}L_{4} + x_{4}L_{5} + x_{5}L_{6} + x_{6}L_{7} + x_{7}L_{8} + x_{8}L_{1} = 0$$

$$x_{1}L_{3} + x_{2}L_{4} + x_{3}L_{5} + x_{4}L_{6} + x_{5}L_{7} + x_{6}L_{8} + x_{7}L_{1} + x_{8}L_{2} = 0$$

$$x_{1}L_{4} + x_{2}L_{5} + x_{3}L_{6} + x_{4}L_{7} + x_{5}L_{8} + x_{6}L_{1} + x_{7}L_{2} + x_{8}L_{3} = 0$$

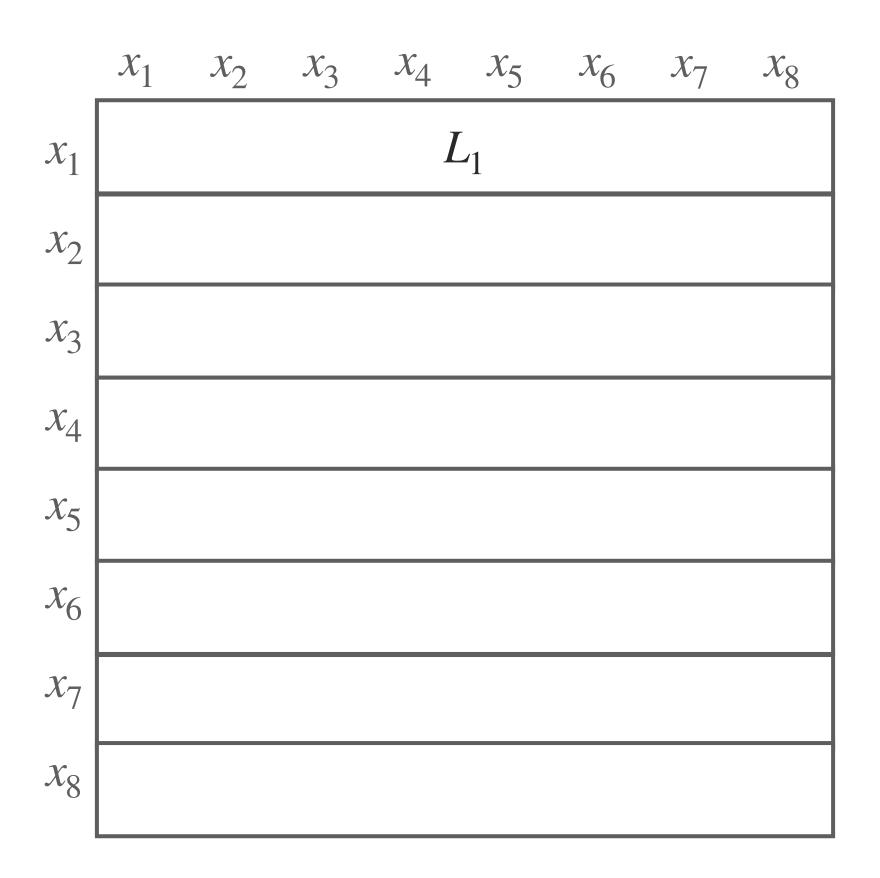


$$x_{1}L_{1} + x_{2}L_{2} + x_{3}L_{3} + x_{4}L_{4} + x_{5}L_{5} + x_{6}L_{6} + x_{7}L_{7} + x_{8}L_{8} = 0$$

$$x_{1}L_{2} + x_{2}L_{3} + x_{3}L_{4} + x_{4}L_{5} + x_{5}L_{6} + x_{6}L_{7} + x_{7}L_{8} + x_{8}L_{1} = 0$$

$$x_{1}L_{3} + x_{2}L_{4} + x_{3}L_{5} + x_{4}L_{6} + x_{5}L_{7} + x_{6}L_{8} + x_{7}L_{1} + x_{8}L_{2} = 0$$

$$x_{1}L_{4} + x_{2}L_{5} + x_{3}L_{6} + x_{4}L_{7} + x_{5}L_{8} + x_{6}L_{1} + x_{7}L_{2} + x_{8}L_{3} = 0$$

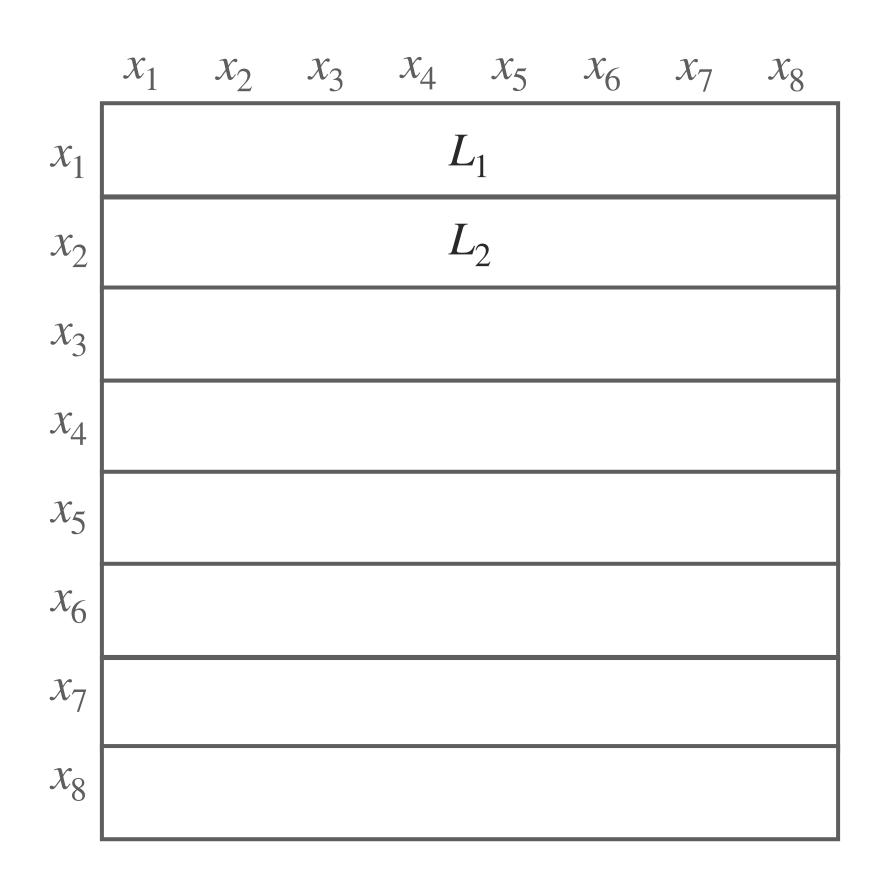


$$x_{1}L_{1} + x_{2}L_{2} + x_{3}L_{3} + x_{4}L_{4} + x_{5}L_{5} + x_{6}L_{6} + x_{7}L_{7} + x_{8}L_{8} = 0$$

$$x_{1}L_{2} + x_{2}L_{3} + x_{3}L_{4} + x_{4}L_{5} + x_{5}L_{6} + x_{6}L_{7} + x_{7}L_{8} + x_{8}L_{1} = 0$$

$$x_{1}L_{3} + x_{2}L_{4} + x_{3}L_{5} + x_{4}L_{6} + x_{5}L_{7} + x_{6}L_{8} + x_{7}L_{1} + x_{8}L_{2} = 0$$

$$x_{1}L_{4} + x_{2}L_{5} + x_{3}L_{6} + x_{4}L_{7} + x_{5}L_{8} + x_{6}L_{1} + x_{7}L_{2} + x_{8}L_{3} = 0$$



$$x_{1}L_{1} + x_{2}L_{2} + x_{3}L_{3} + x_{4}L_{4} + x_{5}L_{5} + x_{6}L_{6} + x_{7}L_{7} + x_{8}L_{8} = 0$$

$$x_{1}L_{2} + x_{2}L_{3} + x_{3}L_{4} + x_{4}L_{5} + x_{5}L_{6} + x_{6}L_{7} + x_{7}L_{8} + x_{8}L_{1} = 0$$

$$x_{1}L_{3} + x_{2}L_{4} + x_{3}L_{5} + x_{4}L_{6} + x_{5}L_{7} + x_{6}L_{8} + x_{7}L_{1} + x_{8}L_{2} = 0$$

$$x_{1}L_{4} + x_{2}L_{5} + x_{3}L_{6} + x_{4}L_{7} + x_{5}L_{8} + x_{6}L_{1} + x_{7}L_{2} + x_{8}L_{3} = 0$$

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8
x_1				1	<u>-</u> 1			
x_2				1	<u>-</u> 2			
x_3				1	<u>-3</u>			
x_4								
x_5								
x_6								
x_7								
x_8								

$$x_{1}L_{1} + x_{2}L_{2} + x_{3}L_{3} + x_{4}L_{4} + x_{5}L_{5} + x_{6}L_{6} + x_{7}L_{7} + x_{8}L_{8} = 0$$

$$x_{1}L_{2} + x_{2}L_{3} + x_{3}L_{4} + x_{4}L_{5} + x_{5}L_{6} + x_{6}L_{7} + x_{7}L_{8} + x_{8}L_{1} = 0$$

$$x_{1}L_{3} + x_{2}L_{4} + x_{3}L_{5} + x_{4}L_{6} + x_{5}L_{7} + x_{6}L_{8} + x_{7}L_{1} + x_{8}L_{2} = 0$$

$$x_{1}L_{4} + x_{2}L_{5} + x_{3}L_{6} + x_{4}L_{7} + x_{5}L_{8} + x_{6}L_{1} + x_{7}L_{2} + x_{8}L_{3} = 0$$

	x_1	x_2	x_3	\mathcal{X}_4	x_5	x_6	x_7	x_8
x_1				1	<u>-1</u>			
x_2				1	<u>-</u> 2			
x_3				1	<u>-3</u>			
x_4				1	r -4			
x_5				1	<u>_</u> 5			
x_6				1	<u>-</u> 6			
x_7				1	7			
x_8				1	<u>7</u> 8			

$$x_{1}L_{1} + x_{2}L_{2} + x_{3}L_{3} + x_{4}L_{4} + x_{5}L_{5} + x_{6}L_{6} + x_{7}L_{7} + x_{8}L_{8} = 0$$

$$x_{1}L_{2} + x_{2}L_{3} + x_{3}L_{4} + x_{4}L_{5} + x_{5}L_{6} + x_{6}L_{7} + x_{7}L_{8} + x_{8}L_{1} = 0$$

$$x_{1}L_{3} + x_{2}L_{4} + x_{3}L_{5} + x_{4}L_{6} + x_{5}L_{7} + x_{6}L_{8} + x_{7}L_{1} + x_{8}L_{2} = 0$$

$$x_{1}L_{4} + x_{2}L_{5} + x_{3}L_{6} + x_{4}L_{7} + x_{5}L_{8} + x_{6}L_{1} + x_{7}L_{2} + x_{8}L_{3} = 0$$

	x_1	x_2	x_3	\mathcal{X}_4	x_5	x_6	x_7	x_8
x_1				1	<u>L</u> ₁			
x_2				1	\mathcal{L}_2			
x_3				1	L_3			
x_4				1	7 _4			
x_5				1	<u>L</u> 5			
x_6				1	<u>L</u> 6			
x_7				1	<u>C</u> 7			
x_8				1	L ₈			

$$x_{1}L_{1} + x_{2}L_{2} + x_{3}L_{3} + x_{4}L_{4} + x_{5}L_{5} + x_{6}L_{6} + x_{7}L_{7} + x_{8}L_{8} = 0$$

$$x_{1}L_{2} + x_{2}L_{3} + x_{3}L_{4} + x_{4}L_{5} + x_{5}L_{6} + x_{6}L_{7} + x_{7}L_{8} + x_{8}L_{1} = 0$$

$$x_{1}L_{3} + x_{2}L_{4} + x_{3}L_{5} + x_{4}L_{6} + x_{5}L_{7} + x_{6}L_{8} + x_{7}L_{1} + x_{8}L_{2} = 0$$

$$x_{1}L_{4} + x_{2}L_{5} + x_{3}L_{6} + x_{4}L_{7} + x_{5}L_{8} + x_{6}L_{1} + x_{7}L_{2} + x_{8}L_{3} = 0$$

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8
x_1				1	<u>-</u> 1			
x_2				1	<u>-</u> 2			
x_3				1	<u>-3</u>			
\mathcal{X}_4				1	-4			
x_5				1	<u></u>			
x_6				1	-6			
x_7				1	7			
x_8				1	<u>r</u> _8			

$$x_{1}L_{1} + x_{2}L_{2} + x_{3}L_{3} + x_{4}L_{4} + x_{5}L_{5} + x_{6}L_{6} + x_{7}L_{7} + x_{8}L_{8} = 0$$

$$x_{1}L_{2} + x_{2}L_{3} + x_{3}L_{4} + x_{4}L_{5} + x_{5}L_{6} + x_{6}L_{7} + x_{7}L_{8} + x_{8}L_{1} = 0$$

$$x_{1}L_{3} + x_{2}L_{4} + x_{3}L_{5} + x_{4}L_{6} + x_{5}L_{7} + x_{6}L_{8} + x_{7}L_{1} + x_{8}L_{2} = 0$$

$$x_{1}L_{4} + x_{2}L_{5} + x_{3}L_{6} + x_{4}L_{7} + x_{5}L_{8} + x_{6}L_{1} + x_{7}L_{2} + x_{8}L_{3} = 0$$

	x_1	x_2	x_3	\mathcal{X}_4	x_5	x_6	x_7	x_8
x_1				1	r -1			
x_2				1	<u></u>			
x_3				1	<u>-3</u>			
x_4				1	-4			
x_5				1	-5			
x_6				1	<u>-</u> 6			
x_7				1	7			
x_8				1	<u>-</u> 8			

	x_1	x_2	x_3	\mathcal{X}_4	x_5	x_6	x_7	x_8
x_1				1	<u>-</u> 2			
x_2				1	<u>-3</u>			
x_3				1	r -4			
x_4				1	<u>-</u> 5			
x_5				1	<u>-</u> 6			
x_6				1	<u>-</u> 7			
<i>x</i> ₇				1	<u>_</u> 8			
x_8				1	<u>_1</u>			

$$x_{1}L_{1} + x_{2}L_{2} + x_{3}L_{3} + x_{4}L_{4} + x_{5}L_{5} + x_{6}L_{6} + x_{7}L_{7} + x_{8}L_{8} = 0$$

$$x_{1}L_{2} + x_{2}L_{3} + x_{3}L_{4} + x_{4}L_{5} + x_{5}L_{6} + x_{6}L_{7} + x_{7}L_{8} + x_{8}L_{1} = 0$$

$$x_{1}L_{3} + x_{2}L_{4} + x_{3}L_{5} + x_{4}L_{6} + x_{5}L_{7} + x_{6}L_{8} + x_{7}L_{1} + x_{8}L_{2} = 0$$

$$x_{1}L_{4} + x_{2}L_{5} + x_{3}L_{6} + x_{4}L_{7} + x_{5}L_{8} + x_{6}L_{1} + x_{7}L_{2} + x_{8}L_{3} = 0$$

	x_1	x_2	x_3	\mathcal{X}_4	x_5	x_6	x_7	x_8
x_1				1	-1			
x_2				1	<u>-2</u>			
x_3				1	<u>-3</u>			
x_4				1	r -4			
x_5				1	-5			
x_6				1	- 6			
x_7				1	7			
x_8				1	<u>r</u> _8			

	x_1	x_2	x_3	\mathcal{X}_4	x_5	x_6	x_7	x_8
x_1				1	L_2			
x_2				1	<u>L</u> 3			
x_3				1	<u>_</u> 4			
\mathcal{X}_4				1	<u>L</u> 5			
x_5				l	<u>L</u> 6			
x_6				Ì	L ₇			
x_7				1	L ₈			
x_8				1	<u>L</u> ₁			

$$x_{1}L_{1} + x_{2}L_{2} + x_{3}L_{3} + x_{4}L_{4} + x_{5}L_{5} + x_{6}L_{6} + x_{7}L_{7} + x_{8}L_{8} = 0$$

$$x_{1}L_{2} + x_{2}L_{3} + x_{3}L_{4} + x_{4}L_{5} + x_{5}L_{6} + x_{6}L_{7} + x_{7}L_{8} + x_{8}L_{1} = 0$$

$$x_{1}L_{3} + x_{2}L_{4} + x_{3}L_{5} + x_{4}L_{6} + x_{5}L_{7} + x_{6}L_{8} + x_{7}L_{1} + x_{8}L_{2} = 0$$

$$x_{1}L_{4} + x_{2}L_{5} + x_{3}L_{6} + x_{4}L_{7} + x_{5}L_{8} + x_{6}L_{1} + x_{7}L_{2} + x_{8}L_{3} = 0$$

x_1	L_1
x_2	L_2
x_{2} x_{3} x_{4} x_{5} x_{6}	L_3
x_4	L_4
x_5	L_5
x_6	L_6
	L_7
x_8	L_8

x_1	L_2
x_2	L_3
x_3	L_4
x_4	L_5
x_5	L_6
x_{2} x_{3} x_{4} x_{5} x_{6} x_{7}	L_7
x_7	L_8
x_8	L_1

$$x_{1}L_{1} + x_{2}L_{2} + x_{3}L_{3} + x_{4}L_{4} + x_{5}L_{5} + x_{6}L_{6} + x_{7}L_{7} + x_{8}L_{8} = 0$$

$$x_{1}L_{2} + x_{2}L_{3} + x_{3}L_{4} + x_{4}L_{5} + x_{5}L_{6} + x_{6}L_{7} + x_{7}L_{8} + x_{8}L_{1} = 0$$

$$x_{1}L_{3} + x_{2}L_{4} + x_{3}L_{5} + x_{4}L_{6} + x_{5}L_{7} + x_{6}L_{8} + x_{7}L_{1} + x_{8}L_{2} = 0$$

$$x_{1}L_{4} + x_{2}L_{5} + x_{3}L_{6} + x_{4}L_{7} + x_{5}L_{8} + x_{6}L_{1} + x_{7}L_{2} + x_{8}L_{3} = 0$$

x_1	L_1
x_2	L_2
x_3	L_3
x_4	L_4
x_5	L_5
	L_6
x_7	L_7
x_8	L_8

x_1	L_2
x_2	L_3
x_{2} x_{3} x_{4} x_{5} x_{6} x_{7}	L_4
x_4	L_5
x_5	L_6
x_6	L_7
x_7	L_8
x_8	L_1

L_2
L_3
L_4
L_5
L_6
L_7
L_8
L_1

$$x_{1}L_{1} + x_{2}L_{2} + x_{3}L_{3} + x_{4}L_{4} + x_{5}L_{5} + x_{6}L_{6} + x_{7}L_{7} + x_{8}L_{8} = 0$$

$$x_{1}L_{2} + x_{2}L_{3} + x_{3}L_{4} + x_{4}L_{5} + x_{5}L_{6} + x_{6}L_{7} + x_{7}L_{8} + x_{8}L_{1} = 0$$

$$x_{1}L_{3} + x_{2}L_{4} + x_{3}L_{5} + x_{4}L_{6} + x_{5}L_{7} + x_{6}L_{8} + x_{7}L_{1} + x_{8}L_{2} = 0$$

$$x_{1}L_{4} + x_{2}L_{5} + x_{3}L_{6} + x_{4}L_{7} + x_{5}L_{8} + x_{6}L_{1} + x_{7}L_{2} + x_{8}L_{3} = 0$$

x_1	L_1
x_2	L_2
x_{2} x_{3} x_{4} x_{5} x_{6} x_{7}	L_3
x_4	L_4
x_5	L_5
x_6	L_6
x_7	L_7
x_8	L_8

x_1	L_2
x_2	L_3
x_3	L_4
x_4	L_5
x_5	L_6
	L_7
x_7	L_8
x_8	L_1

L_3
L_4
L_5
L_6
L_7
L_8
L_1
L_2

$$x_{1}L_{1} + x_{2}L_{2} + x_{3}L_{3} + x_{4}L_{4} + x_{5}L_{5} + x_{6}L_{6} + x_{7}L_{7} + x_{8}L_{8} = 0$$

$$x_{1}L_{2} + x_{2}L_{3} + x_{3}L_{4} + x_{4}L_{5} + x_{5}L_{6} + x_{6}L_{7} + x_{7}L_{8} + x_{8}L_{1} = 0$$

$$x_{1}L_{3} + x_{2}L_{4} + x_{3}L_{5} + x_{4}L_{6} + x_{5}L_{7} + x_{6}L_{8} + x_{7}L_{1} + x_{8}L_{2} = 0$$

$$x_{1}L_{4} + x_{2}L_{5} + x_{3}L_{6} + x_{4}L_{7} + x_{5}L_{8} + x_{6}L_{1} + x_{7}L_{2} + x_{8}L_{3} = 0$$

x_1	L_1
x_2 x_3	L_2
x_3	L_3
x_4	L_4
x_5	L_5
x_5 x_6 x_7	L_6
	L_7
x_8	L_8

x_1	L_2
x_2	L_3
x_2 x_3 x_4 x_5 x_6 x_7	L_4
x_4	L_5
x_5	L_6
x_6	L_7
	L_8
x_8	L_1

L_3
L_4
L_5
L_6
L_7
L_8
L_1
L_2

x_1	L_3
x_2	L_4
$\begin{vmatrix} x_3 \\ x_4 \end{vmatrix}$	L_5
x_4	L_6
x_5	L_7
x_5 x_6 x_7	L_8
	L_1
x_8	L_2

$$x_{1}L_{1} + x_{2}L_{2} + x_{3}L_{3} + x_{4}L_{4} + x_{5}L_{5} + x_{6}L_{6} + x_{7}L_{7} + x_{8}L_{8} = 0$$

$$x_{1}L_{2} + x_{2}L_{3} + x_{3}L_{4} + x_{4}L_{5} + x_{5}L_{6} + x_{6}L_{7} + x_{7}L_{8} + x_{8}L_{1} = 0$$

$$x_{1}L_{3} + x_{2}L_{4} + x_{3}L_{5} + x_{4}L_{6} + x_{5}L_{7} + x_{6}L_{8} + x_{7}L_{1} + x_{8}L_{2} = 0$$

$$x_{1}L_{4} + x_{2}L_{5} + x_{3}L_{6} + x_{4}L_{7} + x_{5}L_{8} + x_{6}L_{1} + x_{7}L_{2} + x_{8}L_{3} = 0$$

x_1	L_1
x_2	L_2
	L_3
x_4	L_4
x_5	L_5
x_5 x_6 x_7	L_6
	L_7
x_8	L_8

x_1	L_2
x_2	L_3
x_3	L_4
x_4	L_5
x_5	L_6
x_6	L_7
x_7	L_8
x_8	L_1

x_1	L_3
x_2	L_4
x_3	L_5
x_4	L_6
x_5	L_7
x_6	L_8
	L_1
x_8	L_2

x_1	L_4
x_2	L_5
x_2	L_6
x_4	L_7
x_5	L_8
x_6	L_1
x_7	L_2
x_8	L_3

$$\mathbf{x}_{v}^{\mathsf{T}} \mathbf{P}_{1}^{(1)} \mathbf{x}_{v} = 0$$

$$\mathbf{x}_{v}^{\mathsf{T}} \mathbf{P}_{1}^{(2)} \mathbf{x}_{v} = 0$$

$$\mathbf{x}_{v}^{\mathsf{T}} \mathbf{P}_{1}^{(m)} \mathbf{x}_{v} = 0$$

$$\mathbf{x}_{v}^{\mathsf{T}} \mathbf{P}_{1}^{(1)} \mathbf{x}_{v} = 0$$
$$\mathbf{x}_{v}^{\mathsf{T}} \mathbf{P}_{1}^{(2)} \mathbf{x}_{v} = 0$$

$$\mathbf{x}_{v}^{\mathsf{T}}\mathbf{P}_{1}^{(m)}\mathbf{x}_{v}=0$$

$$\mathbf{x}_{v}^{\mathsf{T}} \mathbf{P}_{1}^{(1)} \mathbf{x}_{v} = 0$$

$$\mathbf{x}_{v}^{\mathsf{T}} \mathbf{T} \mathbf{P}_{1}^{(1)} \mathbf{x}_{v} = 0$$

$$\mathbf{x}_{v}^{\mathsf{T}}\mathbf{T}^{m-1}\mathbf{P}_{1}^{(1)}\mathbf{x}_{v}=0$$

T is the matrix representing the permutation corresponding to a cyclic upward row shift.

$$\mathbf{x}_{v}^{\mathsf{T}}\mathbf{P}_{1}^{(1)}\mathbf{x}_{v}=0$$

$$\mathbf{x}_{v}^{\mathsf{T}}\mathbf{P}_{1}^{(2)}\mathbf{x}_{v}=0$$

$$\mathbf{x}_{v}^{\mathsf{T}}\mathbf{P}_{1}^{(m)}\mathbf{x}_{v}=0$$

$$\mathbf{x}_{v}^{\mathsf{T}} \mathbf{P}_{1}^{(1)} \mathbf{x}_{v} = 0$$

$$\mathbf{x}_{v}^{\mathsf{T}} \mathbf{T} \mathbf{P}_{1}^{(1)} \mathbf{x}_{v} = 0$$

$$\mathbf{x}_{v}^{\mathsf{T}}\mathbf{T}^{m-1}\mathbf{P}_{1}^{(1)}\mathbf{x}_{v}=0$$

T is the matrix representing the permutation corresponding to a cyclic upward row shift.

In our example:

				-			_
1							
	1						
		1					
			1				
				1			
					1		
						1	
							1

$$\mathbf{x}_{v}^{\mathsf{T}}\mathbf{P}_{1}^{(1)}\mathbf{x}_{v}=0$$

$$\mathbf{x}_{v}^{\mathsf{T}}\mathbf{P}_{1}^{(2)}\mathbf{x}_{v}=0$$

$$\mathbf{x}_{v}^{\mathsf{T}}\mathbf{P}_{1}^{(m)}\mathbf{x}_{v}=0$$

$$\mathbf{x}_{v}^{\mathsf{T}} \mathbf{P}_{1}^{(1)} \mathbf{x}_{v} = 0$$

$$\mathbf{x}^{\mathsf{T}} \mathbf{T} \mathbf{P}_{1}^{(1)} \mathbf{x}_{v} = 0$$

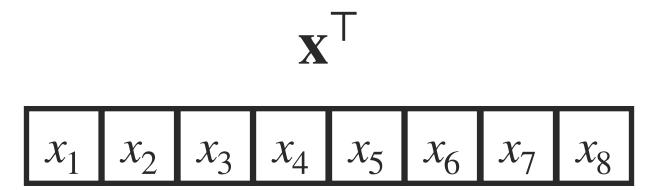
$$\mathbf{x}_{v}^{\mathsf{T}}\mathbf{T}^{m-1}\mathbf{P}_{1}^{(1)}\mathbf{x}_{v}=0$$

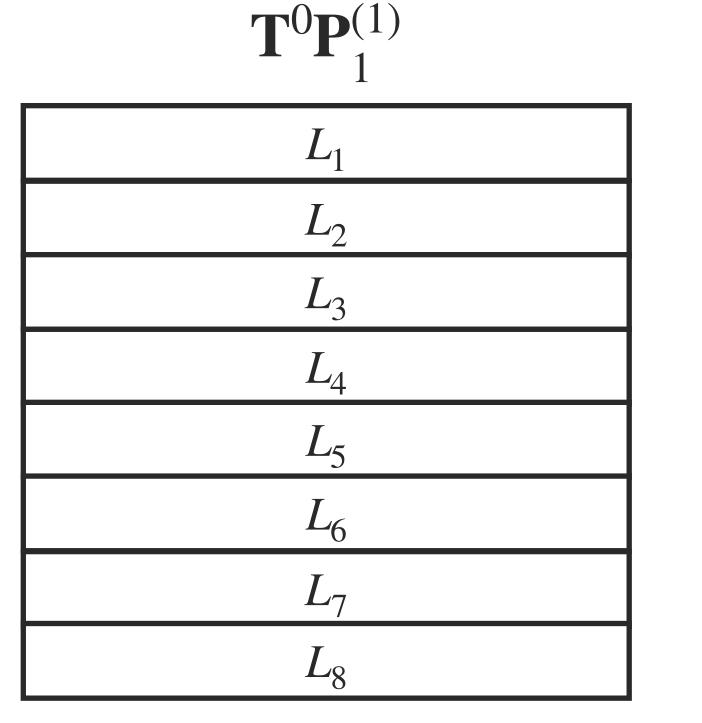
T is the matrix representing the permutation corresponding to a cyclic upward row shift.

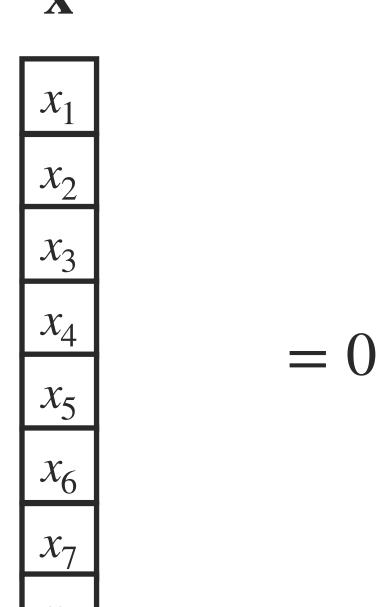
In our example:

	1						
		1					
			1				
				1			
					1		
						1	
							1
1							

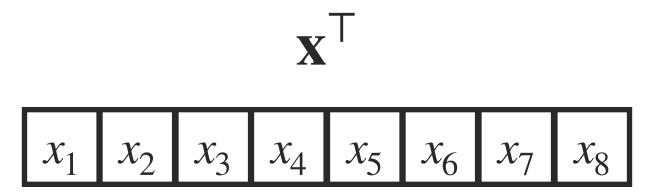
First view: **T** permutes the rows of the quadratic map.





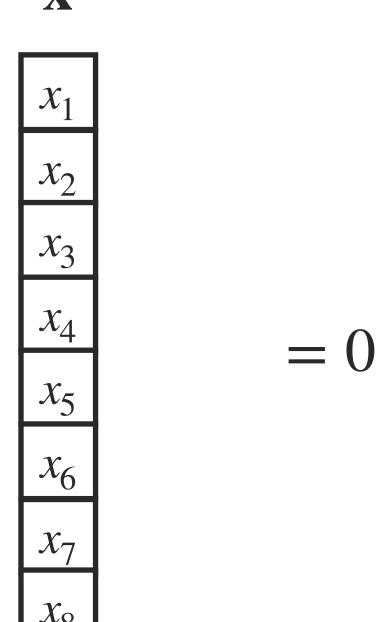


First view: **T** permutes the rows of the quadratic map.



1	_
L_2	J
L_3	J
L_4	J
L_4 L_5	3
L_6	3
L_7	J
L_8	J
L_1	Ĵ

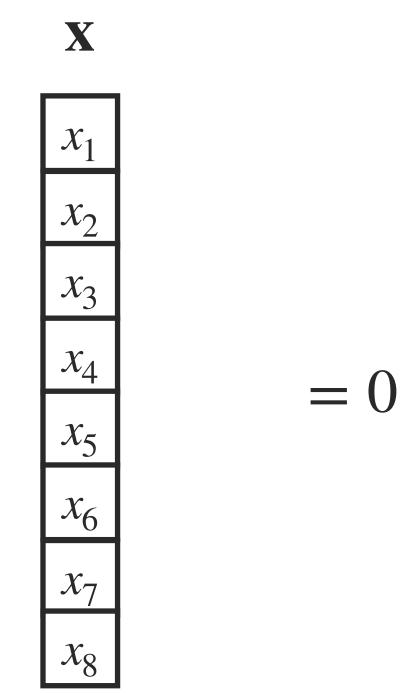
 $T^{0}P^{(1)}$



First view: **T** permutes the rows of the quadratic map.

			X	Τ			
x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8

$\mathbf{T}^{1}\mathbf{P}_{1}^{(1)}$
L_2
L_3
L_4
L_5
L_6
L_7
L_8
L_1



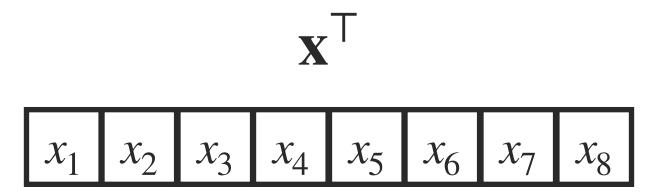
First view: **T** permutes the rows of the quadratic map.

			X	Τ			
x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8

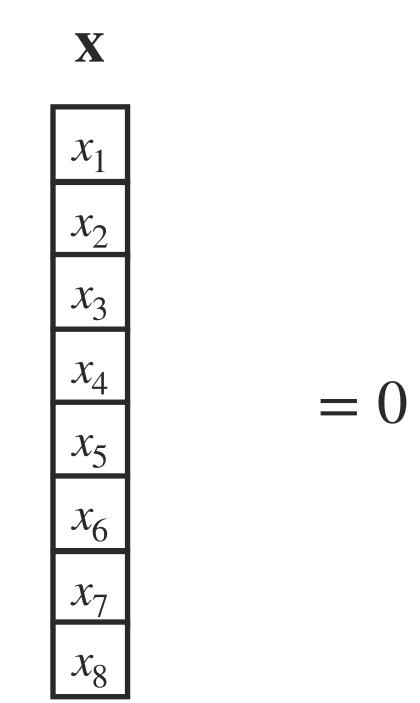
$\mathbf{T}^{1}\mathbf{P}_{1}^{(1)}$	
L_3	
L_4	
L_5	
L_6	
L_7	
L_8	
L_1	
L_2	

 $\begin{array}{c}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5 \\
x_6 \\
x_7 \\
x
\end{array}
= 0$

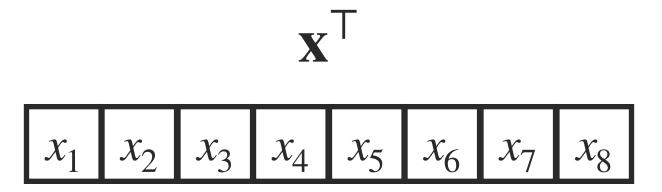
First view: **T** permutes the rows of the quadratic map.



$\mathbf{T}^2\mathbf{P}_1^{(1)}$
L_3
L_4
L_5
L_6
L_7
L_8
L_1
L_2



First view: **T** permutes the rows of the quadratic map.

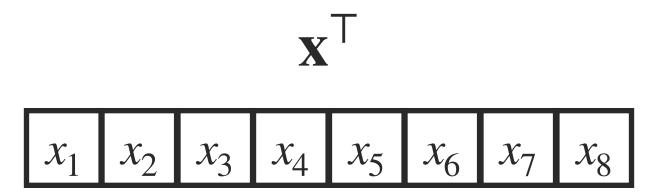


<u> </u>
L_4
L_5
L_6
L_7
L_8
L_1
L_2
L_3

 $T^2P_1^{(1)}$

$$\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ \hline x_4 \\ \hline x_5 \\ \hline x_6 \\ \hline x_7 \\ \end{array} = 0$$

First view: **T** permutes the rows of the quadratic map.



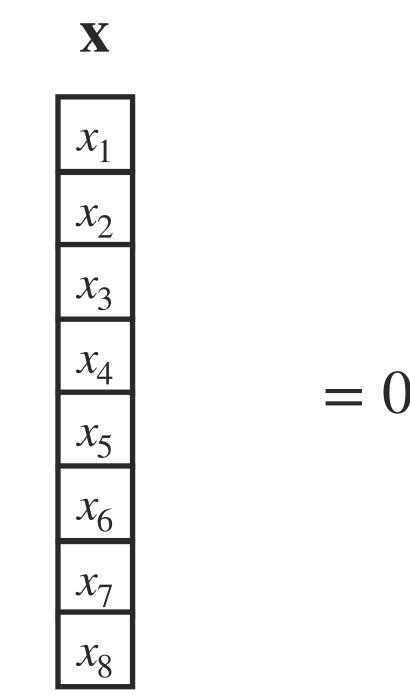
L_4	
L_5	
L_6	
L_7	
L_8	
L_1	
L_2	
L_3	

 $T^3P^{(1)}$

$$\begin{array}{c} \mathbf{x} \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \\ \end{array} = 0$$

			\mathbf{x}^{T}	\mathbf{T}^0			
$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 \end{bmatrix}$							

$\mathbf{P}_{1}^{(1)}$
L_1
L_2
L_3
L_4
L_5
L_6
L_7
L_8



Second view: **T** permutes the columns of the left vector.

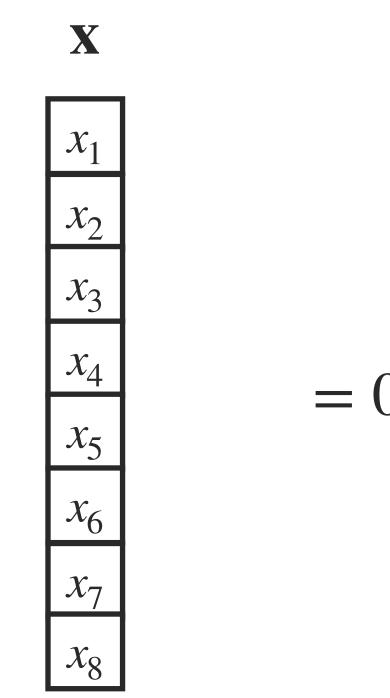
			\mathbf{x}^{T}	\mathbf{T}^0			
x_8	x_1	x_2	x_3	x_4	x_5	x_6	x_7

$\mathbf{P}_1^{(1)}$	X
L_1	x_1
L_2	x_2
L_3	x_2 x_3
L_4	\mathcal{X}_4
L_5	x_{5} x_{6}
L_6	x_6
L_7	x_7
L_8	\mathcal{X}_{8}

=0

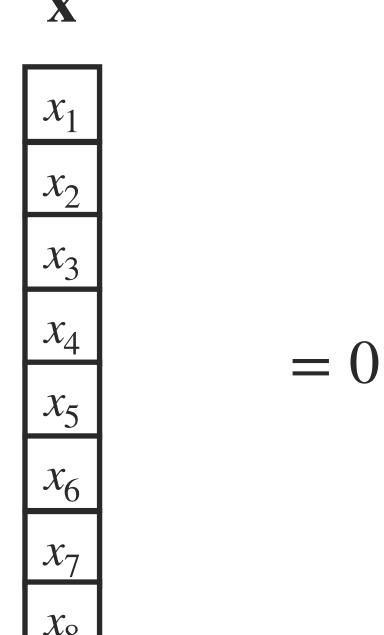
			\mathbf{x}^{T}	\mathbf{T}^1			
$\begin{bmatrix} x_8 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 \end{bmatrix}$							

$\mathbf{P}_1^{(1)}$
L_1
L_2
L_3
L_4
L_5
L_6
L_7
L_8



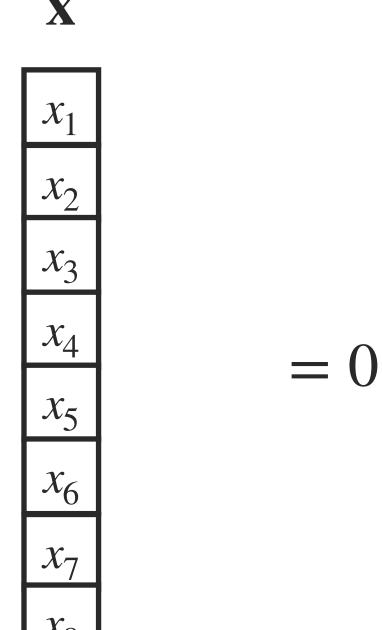
			\mathbf{x}^{T}	\mathbf{T}^1			
x_7	x_8	x_1	x_2	x_3	x_4	x_5	x_6

$\mathbf{P}_1^{(1)}$	
L_1	
L_2	
L_3	
L_4	
L_5	
L_6	
L_7	
L_8	



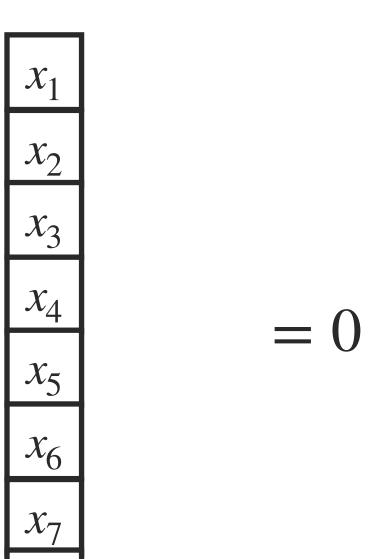
			\mathbf{x}^{T}	\mathbf{T}^2			
x_7	x_8	x_1	x_2	x_3	x_4	x_5	x_6

P (1)	
L_1	
L_2	
L_3	
L_4	
L_5	
L_6	
L_7	
L_8	



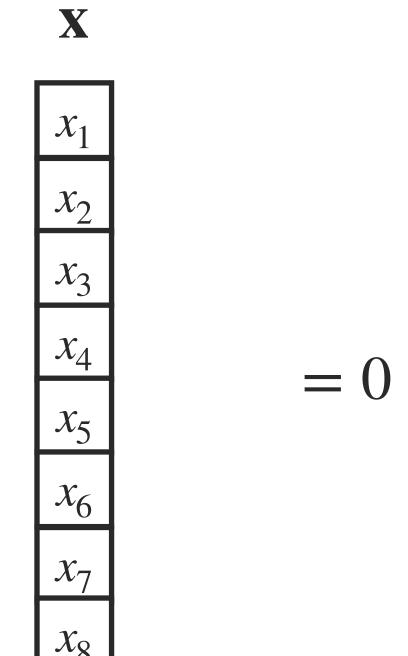
			\mathbf{x}^{T}	\mathbf{T}^2			
x_6	x_7	x_8	x_1	x_2	x_3	X_4	x_5

$\mathbf{P}_1^{(1)}$	X
L_1	x_1
L_2	x_2 x_3
L_3	x_3
L_4	\mathcal{X}_4
L_5	x_5
L_6	x_6
L_7	x_7
L_8	x_8



$\mathbf{x}^{T}\mathbf{T}^{3}$								
x_6	x_7	x_8	x_1	x_2	x_3	x_4	x_5	

$\mathbf{P}_{1}^{(1)}$	
L_1	
L_2	
L_3	
L_4	
L_5	
L_6	
L_7	
L_8	



Vectors that have a repeating subsequence need to satisfy fewer constraints.

4

$\mathbf{x}^T\mathbf{T}^0$								
x_1	x_2	x_3	X_4	x_5	x_6	x_7	x_8	

$\mathbf{P}_1^{(1)}$	X
L_1	$ x_1 $
L_2	x_2
L_3	x_2
L_4	x_4
L_5	x_5
L_6	x_6
L_7	x_7
L_8	x_8

4

	$\mathbf{x}^{T}\mathbf{T}^{0}$							
	x_8	x_1	x_2	x_3	x_4	x_5	x_6	x_7
•								

$\mathbf{P}_1^{(1)}$	X	
L_1	$ x_1 $	
L_2	x_2	
L_3	x_3	
L_4	x_4	. (
L_5	x_5	•
L_6	x_6	
L_7	\mathcal{X}_{7}	
L_8	\mathcal{X}_8	

4

$\mathbf{x}^T\mathbf{T}^1$	$\mathbf{P}_1^{(1)}$	X	
$x_8 x_1 x_2 x_3 x_4 x_5 x_6 x_7$	L_1	x_1	
	L_2	x_2	
	L_3	x_3	
	L_4	x_4	
	L_5	x_5	
	L_6	x_6	
	L_7	x_7	

4

$\mathbf{x}^T\mathbf{T}^1$	$\mathbf{P}_1^{(1)}$	X	
$x_7 x_8 x_1 x_2 x_3 x_4 x_5 x_6$	L_1	$ x_1 $	
	L_2	x_2	
	L_3	x_3	
	L_4	x_4	=0
	L_5	x_5	– 0
	L_6	x_6	
	L_7	\mathcal{X}_{7}	
	I	$\boldsymbol{\gamma}_{\mathbf{a}}$	

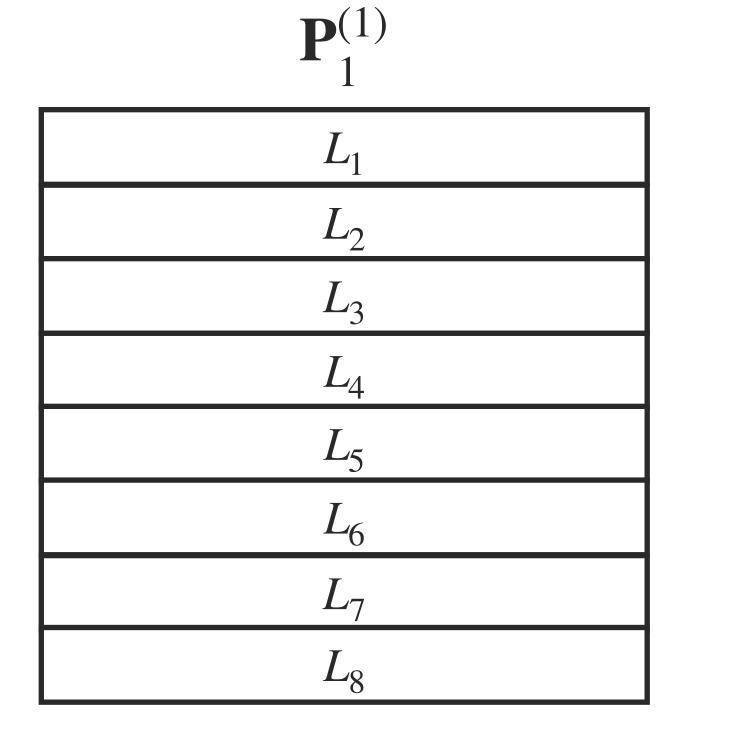
4

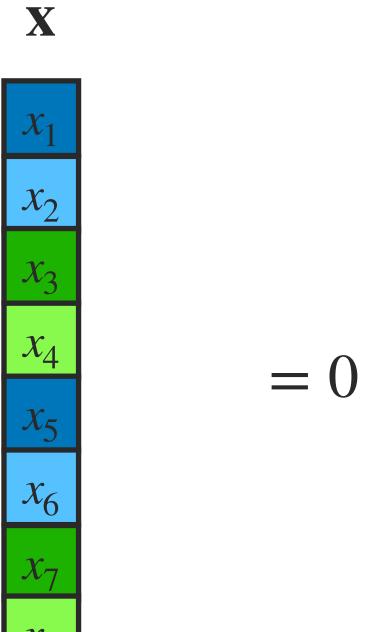
$\mathbf{x}^{T}\mathbf{T}^{2}$								
x_7	x_8	x_1	x_2	x_3	x_4	x_5	x_6	

$\mathbf{P}_1^{(1)}$	X
L_1	$ x_1 $
L_2	x_2
L_3	x_3
L_4	\mathcal{X}_4
L_5	x_5
L_6	x_6
L_7	\mathcal{X}_{7}
L_8	\mathcal{X}_8

4

$\mathbf{x}^{T}\mathbf{T}^{0}$								
x_1	x_2	X_3	X_4	x_5	x_6	x_7	x_8	





4

Example: **x** is a 4-periodic vector.

$\mathbf{x}^T\mathbf{T}^0$								
x_8	x_1	x_2	x_3	X_4	x_5	x_6	x_7	
-								

$\mathbf{P}_1^{(1)}$	X
L_1	$ x_1 $
L_2	x_2
L_3	x_3
L_4	x_4
L_5	x_5
L_6	x_6
L_7	x_7
L_8	x_8

 $\begin{array}{c}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5 \\
x_6 \\
x_7
\end{array}
= 0$

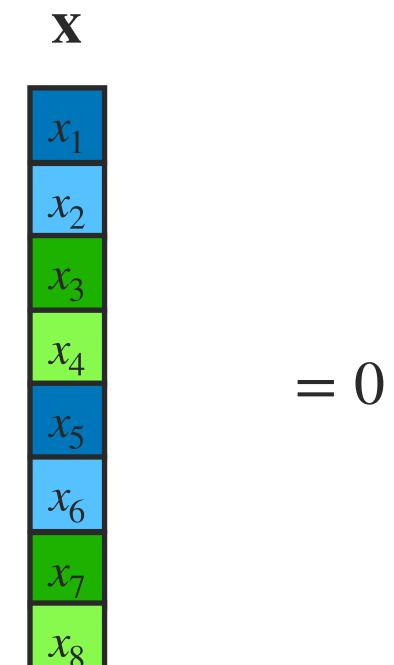
4

$\mathbf{x}^T\mathbf{T}^1$	$\mathbf{P}_1^{(1)}$	X	
$x_8 $	L_1	$ x_1 $	
	L_2	x_2	
	L_3	x_3	
	L_4	x_4	=0
	L_5	x_5	– 0
	L_6	x_6	
	L_7	x_7	
	I	$oldsymbol{v}$	

4

			\mathbf{x}^{T}	\mathbf{T}^1				
x_7	x_8	x_1	x_2	x_3	x_4	x_5	x_6	
,	O	1					U	

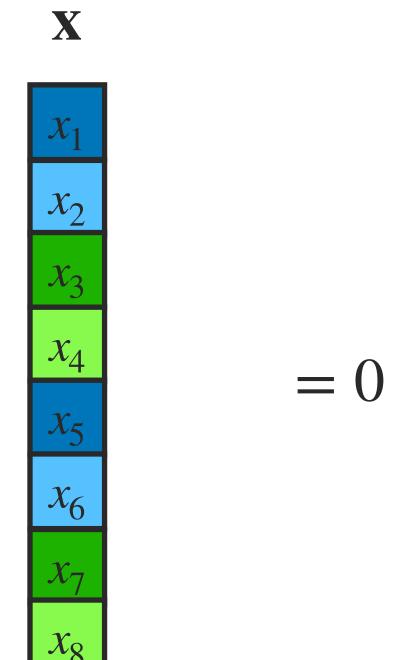
P (1)	
L_1	
L_2	
L_3	
L_4	
L_5	
L_6	
L_7	
L_8	



4

$\mathbf{x}^{T}\mathbf{T}^{2}$							
x_7	<i>x</i> ₈	x_1	x_2	x_3	x_4	x_5	x_6

$\mathbf{P}_{1}^{(1)}$	
L_1	
L_2	
L_3	
L_4	
L_5	
L_6	
L_7	
L_8	



4

Example: **x** is a 4-periodic vector.

$\mathbf{x}^{T}\mathbf{T}^{2}$							
x_6	x_7	x_8	x_1	x_2	x_3	x_4	x_5

$\mathbf{P}_1^{(1)}$	
L_1	
L_2	
L_3	
L_4	
L_5	
L_6	
L_7	
L_8	

 $\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ \hline x_4 \\ \hline x_5 \\ \hline x_6 \\ \hline x_7 \\ \end{array} = 0$

4

Example: **x** is a 4-periodic vector.

			\mathbf{x}^{T}	T^3			
x_6	x_7	x_8	x_1	x_2	x_3	x_4	x_5

$\mathbf{P}_1^{(1)}$	X
L_1	$ x_1 $
L_2	x_2
L_3	x_3
L_4	x_4
L_5	x_5
L_6	x_6
L_7	x_7
L_8	x_8

 $\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ \hline x_4 \\ x_5 \\ \hline x_6 \\ \hline x_7 \\ \end{array} = 0$

Example: **x** is a 4-periodic vector (**if** a 5th equation existed).

$\mathbf{x}^{T}\mathbf{T}^{3}$	$\mathbf{P}_1^{(1)}$	X	
$x_6 x_7 x_8 x_1 x_2 x_3 x_4 x_5$	L_1	$ x_1 $	
	L_2	x_2	
	L_3	x_3	
	L_4	<i>x</i> ₄	\cap
	L_5	x_5	U
	L_6	x_6	
	L_7	x_7	
	1.	$\mathcal{X}_{\mathcal{O}}$	

Example: **x** is a 4-periodic vector (**if** a 5th equation existed).

$\mathbf{x}^{T}\mathbf{T}^{3}$	$\mathbf{P}_1^{(1)}$	X	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	L_1	$ x_1 $	
	L_2	x_2	
	L_3	x_3	
	L_4	x_4	=0
	L_5	x_5	– 0
	L_6	x_6	
	L_7	x_7	
	I .	γ_{α}	

4

Example: **x** is a 4-periodic vector (**if** a 5th equation existed).

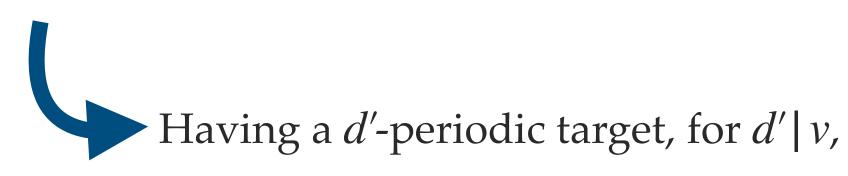
$\mathbf{x}^{T}\mathbf{T}^{4}$	$\mathbf{P}_1^{(1)}$	X	
$\begin{bmatrix} x_5 & x_6 & x_7 & x_8 & x_1 & x_2 & x_3 & x_4 \end{bmatrix}$	L_1	$ x_1 $	
	L_2	x_2	
	L_3	x_3	
	L_4	x_4	= 0
	L_5	X_5	– 0
	L_6	x_6	
	L_7	x_7	
	I	v	

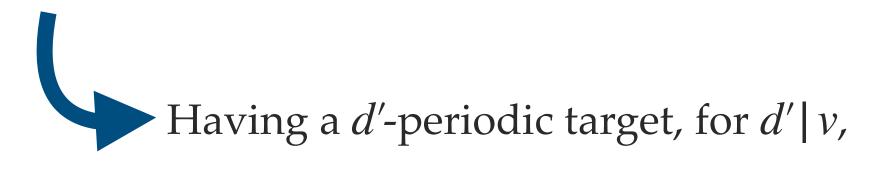
4

Example: **x** is a 4-periodic vector (**if** a 5th equation existed).

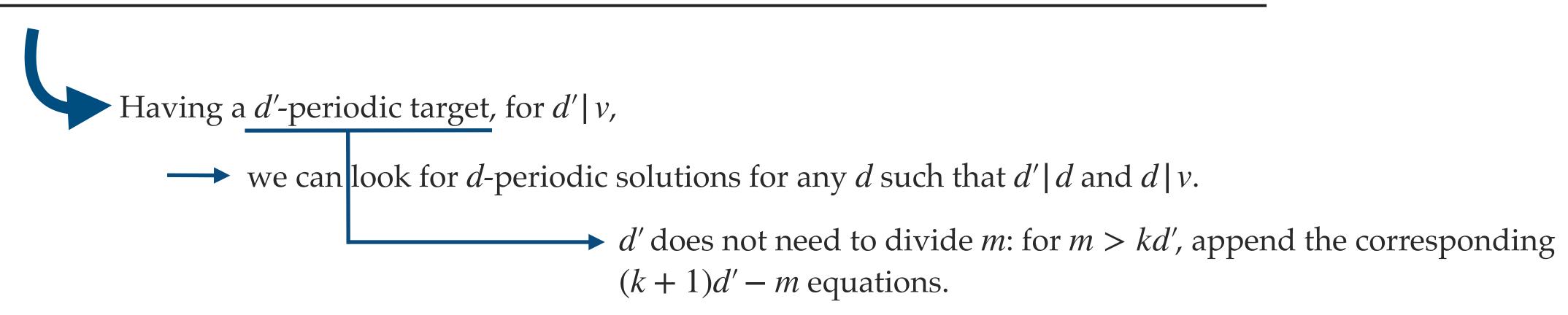
$\mathbf{x}^{T}\mathbf{T}^{4}$	$\mathbf{P}_1^{(1)}$	X	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	L_1	$ x_1 $	
	L_2	x_2	
	L_3	x_3	
	L_4	x_4	=0
	L_5	x_5	– 0
	L_6	x_6	
	L_7	x_7	
	I_{-0}	χ_{Ω}	

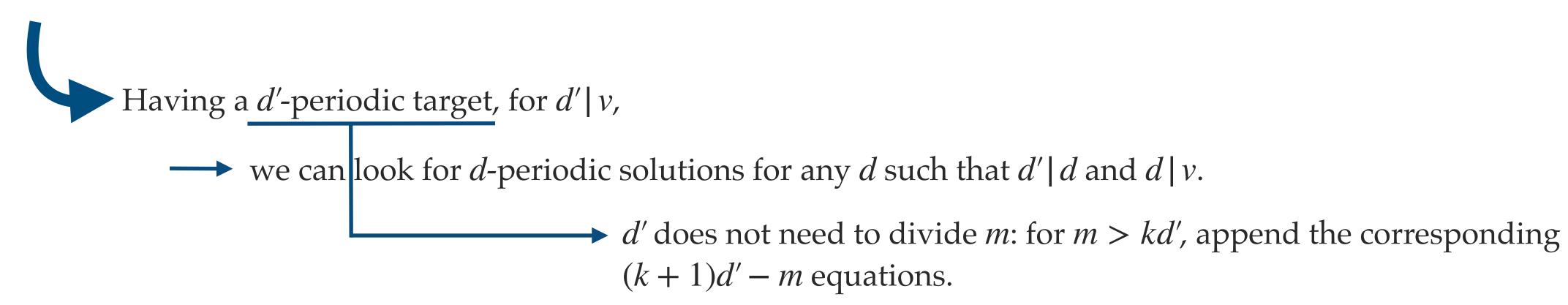
We obtain repeating equations only because we needed to solve for target $\mathbf{w} = (0000)$, which is a 1-periodic target.



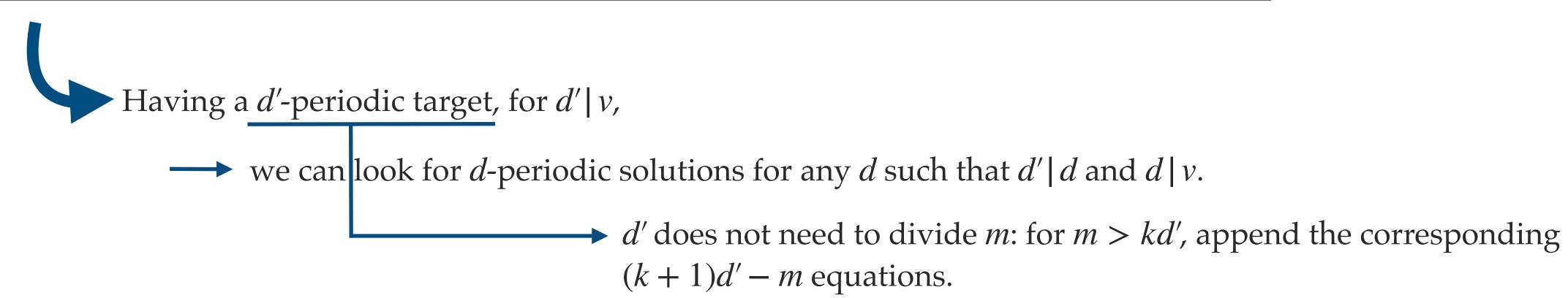


we can look for *d*-periodic solutions for any *d* such that d'|d and d|v.



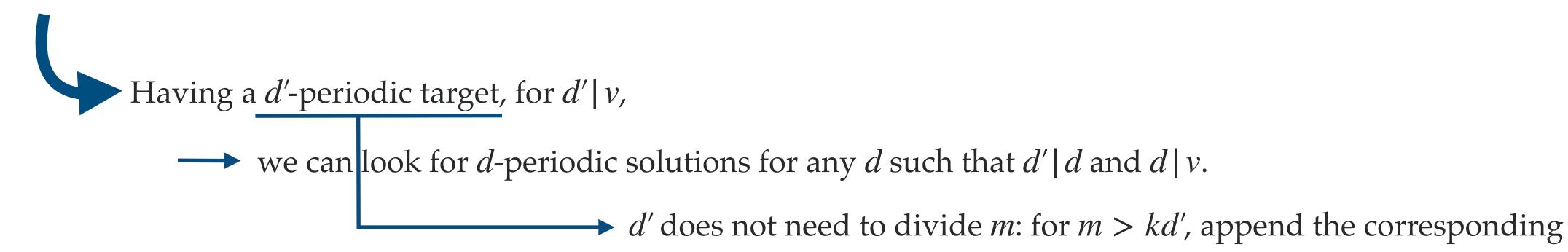


Example. v = 72, m = 46 (MQ-Sign security level I parameters).



Example. v = 72, m = 46 (MQ-Sign security level I parameters).

• Having a 1-periodic target, we can look for a *d*-periodic solution for *d* in {1,2,3,4,6,8,9,12,18,24,36}.



(k+1)d'-m equations.

Example. v = 72, m = 46 (MQ-Sign security level I parameters).

- Having a 1-periodic target, we can look for a *d*-periodic solution for *d* in {1,2,3,4,6,8,9,12,18,24,36}.
- Having a 2-periodic target, we can look for a d-periodic solution for d in {2,4,6,8,12,18,24,36}.

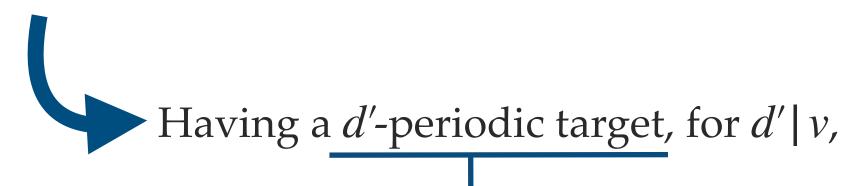
we can look for d-periodic solutions for any d such that $d' \mid d$ and $d \mid v$.

→ d' does not need to divide m: for m > kd', append the corresponding (k+1)d' - m equations.

Example. v = 72, m = 46 (MQ-Sign security level I parameters).

- Having a 1-periodic target, we can look for a *d*-periodic solution for *d* in {1,2,3,4,6,8,9,12,18,24,36}.
- Having a 2-periodic target, we can look for a *d*-periodic solution for *d* in {2,4,6,8,12,18,24,36}.

• Having a 12-periodic target, we can look for a *d*-periodic solution for *d* in {12,24,36}.



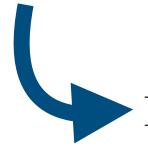
 \longrightarrow we can look for d-periodic solutions for any d such that $d' \mid d$ and $d \mid v$.

→ d' does not need to divide m: for m > kd', append the corresponding (k+1)d' - m equations.

Example. v = 72, m = 46 (MQ-Sign security level I parameters).

- Having a 1-periodic target, we can look for a *d*-periodic solution for *d* in {1,2,3,4,6,8,9,12,18,24,36}.
- Having a 2-periodic target, we can look for a d-periodic solution for d in {2,4,6,8,12,18,24,36}.

- Having a 12-periodic target, we can look for a *d*-periodic solution for *d* in {12,24,36}.
- Having an 18-periodic target, we can look for a d-periodic solution for d in $\{18,36\}$.
- Having an 24-periodic target, we can look for a d-periodic solution for d in $\{24\}$.
- Having an 36-periodic target, we can look for a d-periodic solution for d in $\{36\}$.



Having a d'-periodic target, for $d' \mid v$,

we can look for d-periodic solutions for any d such that $d' \mid d$ and $d \mid v$.

→ d' does not need to divide m: for m > kd', append the corresponding (k+1)d' - m equations.

Example. v = 72, m = 46 (MQ-Sign security level I parameters).

- Having a 1-periodic target, we can look for a *d*-periodic solution for *d* in {1,2,3,4,6,8,9,12,18,24,36}.
- Having a 2-periodic target, we can look for a d-periodic solution for d in {2,4,6,8,12,18,24,36}.

- Having a 12-periodic target, we can look for a *d*-periodic solution for *d* in {12,24,36}.
- Having an 18-periodic target, we can look for a d-periodic solution for d in $\{18,36\}$.
- Having an 24-periodic target, we can look for a d-periodic solution for d in $\{24\}$.
- Having an 36-periodic target, we can look for a d-periodic solution for d in $\{36\}$.

We call such d'-periodic targets weak targets.

Algebraic attack outline

For a d'-periodic target, we build the system comprised of the first d equations (for the largest d we can solve for) in the forgery modelisation.

$$\mathbf{x}_{v}^{\mathsf{T}} \mathbf{P}_{1}^{(1)} \mathbf{x}_{v} = w_{1}$$

$$\mathbf{x}_{v}^{\mathsf{T}} \mathbf{T} \mathbf{P}_{1}^{(1)} \mathbf{x}_{v} = w_{2}$$

$$\cdots$$

$$\mathbf{x}_{v}^{\mathsf{T}} \mathbf{T}^{d-1} \mathbf{P}_{1}^{(1)} \mathbf{x}_{v} = w_{d-1}.$$

Algebraic attack outline

For a d'-periodic target, we build the system comprised of the first d equations (for the largest d we can solve for) in the forgery modelisation.

$$\mathbf{x}_{v}^{\mathsf{T}} \mathbf{P}_{1}^{(1)} \mathbf{x}_{v} = w_{1}$$

$$\mathbf{x}_{v}^{\mathsf{T}} \mathbf{T} \mathbf{P}_{1}^{(1)} \mathbf{x}_{v} = w_{2}$$

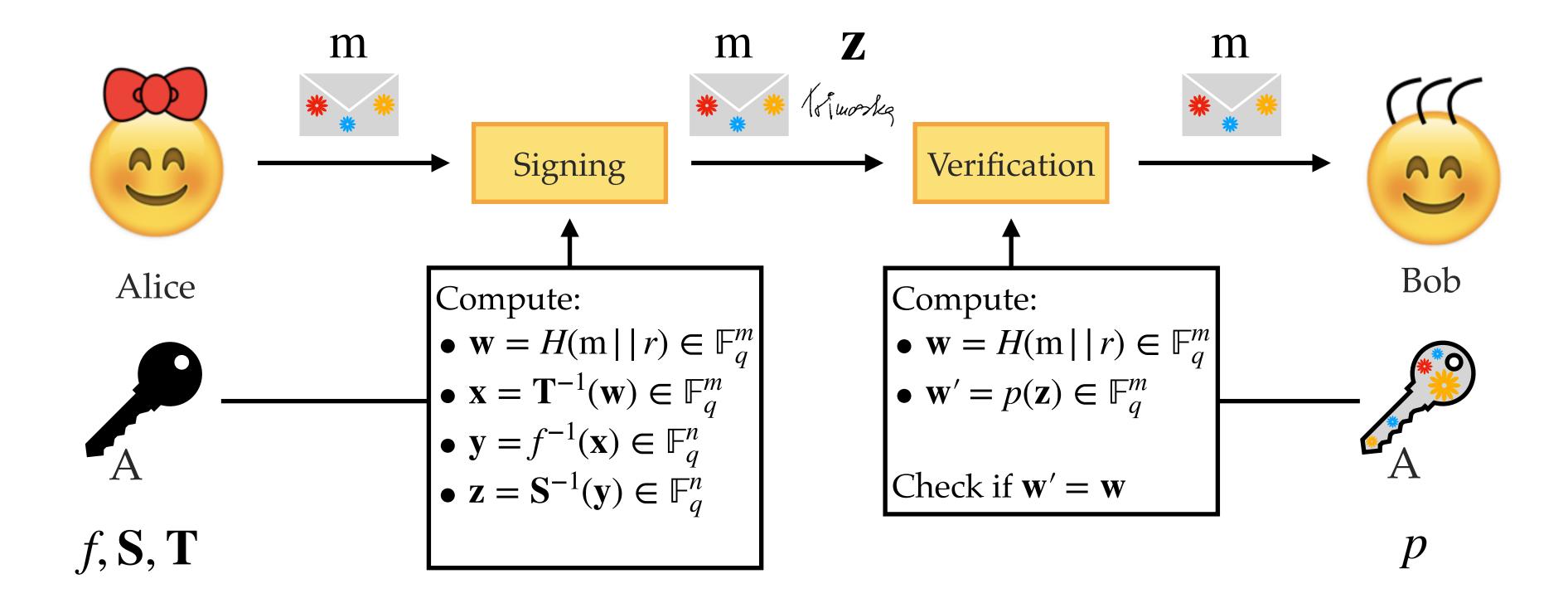
$$\cdots$$

$$\mathbf{x}_{v}^{\mathsf{T}} \mathbf{T}^{d-1} \mathbf{P}_{1}^{(1)} \mathbf{x}_{v} = w_{d-1}.$$

→ We solve this system using FXL with an improved guessing strategy developed for these systems with a specific structure.

Towards a universal forgery attack

The trapdoor construction



For a chosen *d*

For a chosen *d*

- \longrightarrow Choose randomly salt r.
- \longrightarrow Compute $\mathbf{w} = H(\mathbf{m} | | r)$.

Until **w** is d-periodic (includes all $d' \mid d$).

For a chosen *d*

- \longrightarrow Choose randomly salt r.
- \longrightarrow Compute $\mathbf{w} = H(\mathbf{m} | | r)$.

Until **w** is *d*-periodic (includes all d'|d).

→ Solve the system of equations

$$\mathbf{x}_{v}^{\mathsf{T}} \mathbf{P}_{1}^{(1)} \mathbf{x}_{v} = w_{1}$$

$$\mathbf{x}_{v}^{\mathsf{T}} \mathbf{T} \mathbf{P}_{1}^{(1)} \mathbf{x}_{v} = w_{2}$$

$$\mathbf{x}_{v}^{\mathsf{T}} \mathbf{T}^{d-1} \mathbf{P}_{1}^{(1)} \mathbf{x}_{v} = w_{d-1}.$$

For a chosen *d*

 \longrightarrow Compute $\mathbf{w} = H(\mathbf{m} | | r)$.

Until **w** is *d*-periodic (includes all d'|d).

→ Solve the system of equations

$$\mathbf{x}_{v}^{\mathsf{T}} \mathbf{P}_{1}^{(1)} \mathbf{x}_{v} = w_{1}$$

$$\mathbf{x}_{v}^{\mathsf{T}} \mathbf{T} \mathbf{P}_{1}^{(1)} \mathbf{x}_{v} = w_{2}$$

$$\cdots$$

$$\mathbf{x}_{v}^{\mathsf{T}} \mathbf{T}^{d-1} \mathbf{P}_{1}^{(1)} \mathbf{x}_{v} = w_{d-1}.$$

If no solutionrepeat.

For a chosen *d*

$$\longrightarrow$$
 Compute $\mathbf{w} = H(\mathbf{m} | | r)$.

Until **w** is *d*-periodic (includes all d'|d).

Solve the system of equations

$$\mathbf{x}_{v}^{\mathsf{T}} \mathbf{P}_{1}^{(1)} \mathbf{x}_{v} = w_{1}$$

$$\mathbf{x}_{v}^{\mathsf{T}} \mathbf{T} \mathbf{P}_{1}^{(1)} \mathbf{x}_{v} = w_{2}$$

$$\mathbf{x}_{v}^{\mathsf{T}} \mathbf{T}^{d-1} \mathbf{P}_{1}^{(1)} \mathbf{x}_{v} = w_{d-1}.$$

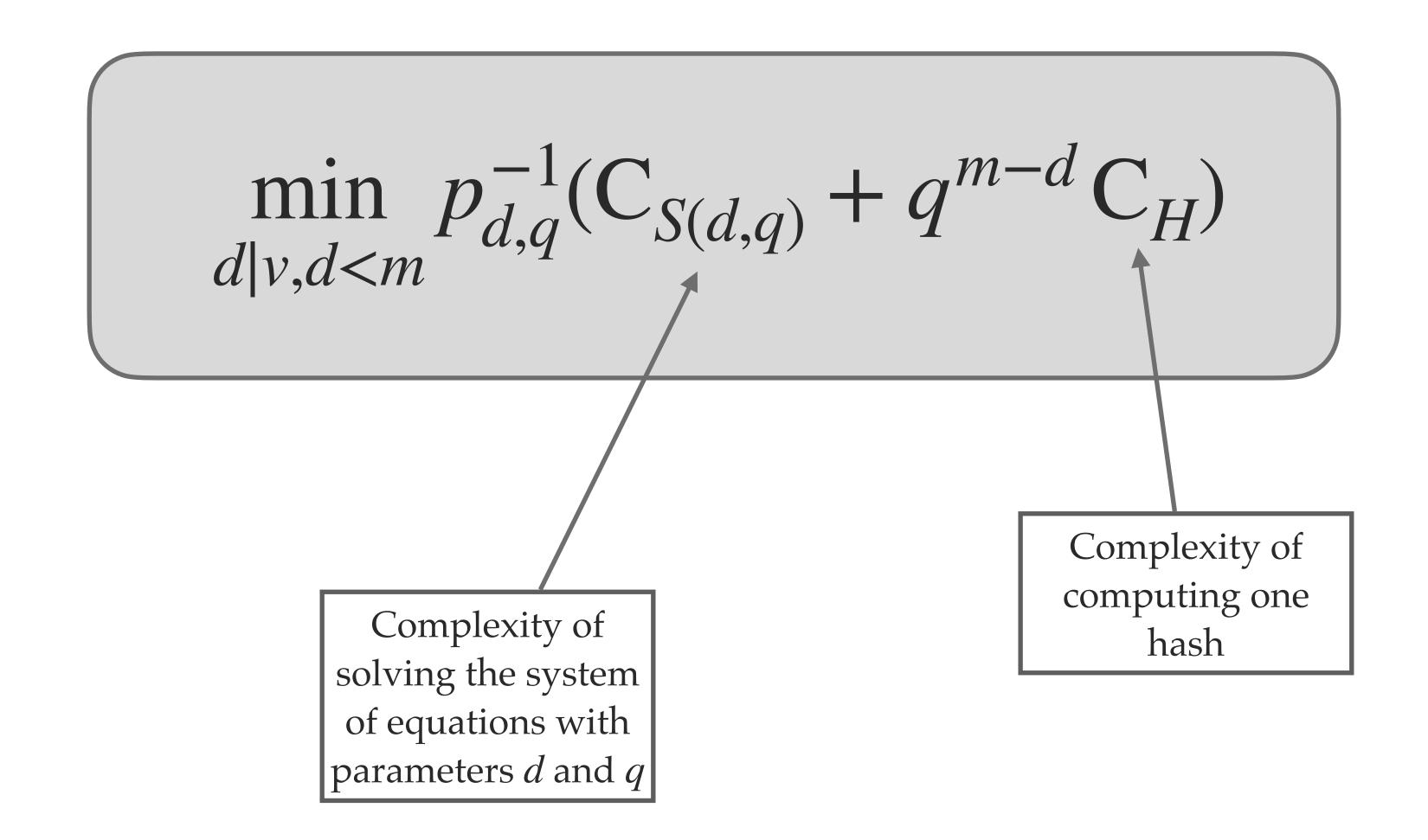
→ If no solution

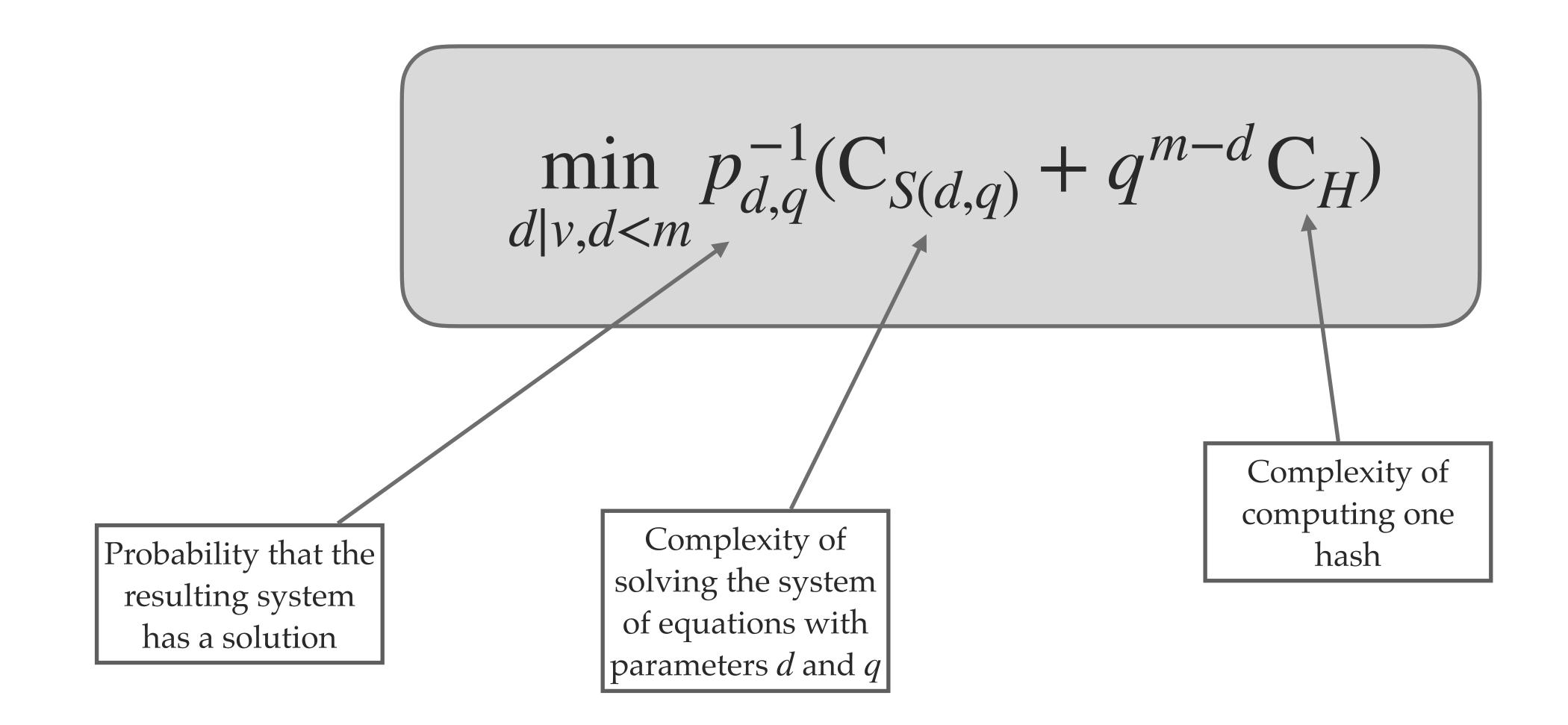
repeat.

Else: V Kuoska

$$\min_{d|v,d < m} p_{d,q}^{-1}(\mathbf{C}_{S(d,q)} + q^{m-d}\mathbf{C}_{H})$$

$$\min_{\substack{d \mid v,d < m}} p_{d,q}^{-1}(\mathbf{C}_{S(d,q)} + q^{m-d}\mathbf{C}_{H})$$
Complexity of solving the system of equations with parameters d and q





Level	q	v	m	$\log_2 \cos t$
Ι	256	72	46	108
III	256	112	72	172
V	256	148	96	216

Level	q	v	m	$\log_2 \cos t$
Ι	256	72	46	108
III	256	112	72	172
\mathbf{V}	256	148	96	216

We compute the complexity $C_{S(d,q)}$ under the assumption that the system is semi-regular, while the system clearly has a specific structure.

Level	q	v	m	$\log_2 \cos t$
Ι	256	72	46	108
III	256	112	72	172
V	256	148	96	216

We compute the complexity $C_{S(d,q)}$ under the assumption that the system is semi-regular, while the system clearly has a specific structure.

Not precise enough for choosing parameters, for instance.

Increasing parameter sizes.

Increasing parameter sizes.

Increasing parameter sizes.

Choosing parameters such that v (the number of vinegar variables and hence the length of the vector in our attack) is prime.

Increasing parameter sizes.

Choosing parameters such that v (the number of vinegar variables and hence the length of the vector in our attack) is prime.

Increasing parameter sizes.

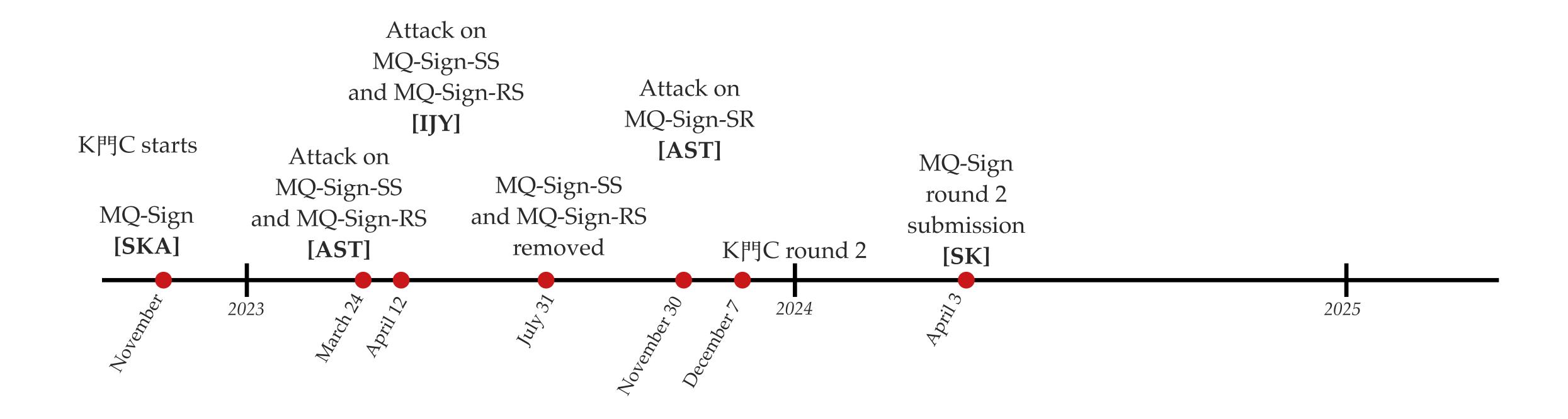
Choosing parameters such that v (the number of vinegar variables and hence the length of the vector in our attack) is prime.

Including linear and constant factors in the central map.

Increasing parameter sizes.



→ Including linear and constant factors in the central map.

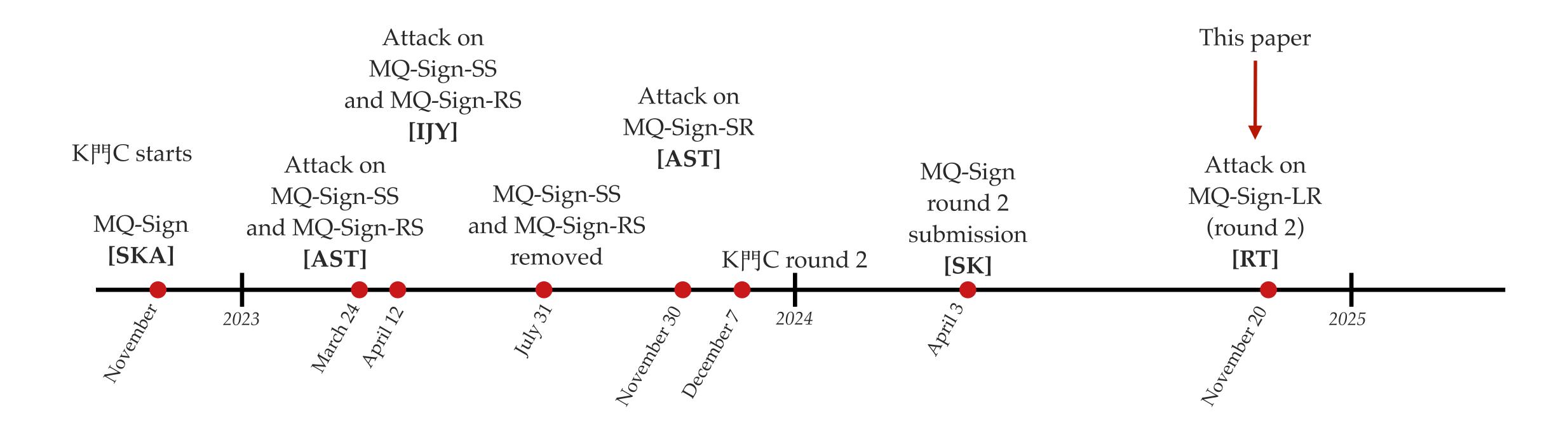


[SKA] Shim, Kim, An. MQ-Sign. A New Post-Quantum Signature Scheme based on Multivariate Quadratic Equations: Shorter and Faster. (2022)

[AST] Aulbach, Samardjiska, Trimoska. Practical key-recovery attack on MQ-Sign and more. (2023)

[IJY] Ikematsu, Jo, Yasuda. A security analysis on MQ-Sign. (2023)

[SK] Shim, Kwon. MQ-Sign. A New Post-Quantum Signature Scheme based on Multivariate Quadratic Equations: Shorter and Faster. (2024)



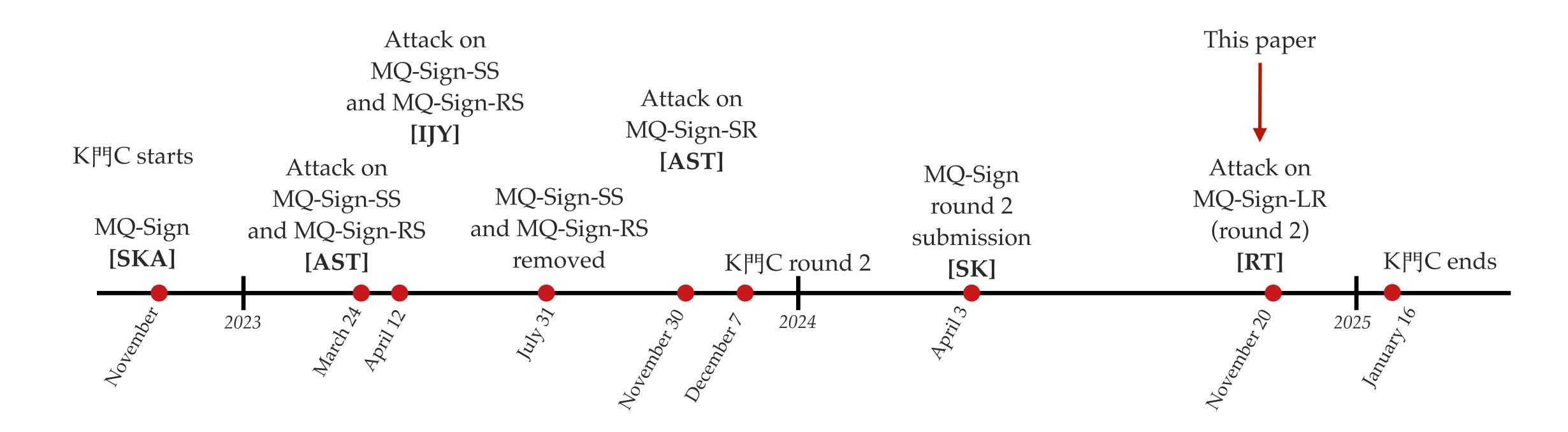
[SKA] Shim, Kim, An. MQ-Sign. A New Post-Quantum Signature Scheme based on Multivariate Quadratic Equations: Shorter and Faster. (2022)

[AST] Aulbach, Samardjiska, Trimoska. Practical key-recovery attack on MQ-Sign and more. (2023)

[IJY] Ikematsu, Jo, Yasuda. A security analysis on MQ-Sign. (2023)

[SK] Shim, Kwon. MQ-Sign. A New Post-Quantum Signature Scheme based on Multivariate Quadratic Equations: Shorter and Faster. (2024)

[RT] Ran, Trimoska. Shifting our knowledge of MQ-Sign security. (2024)



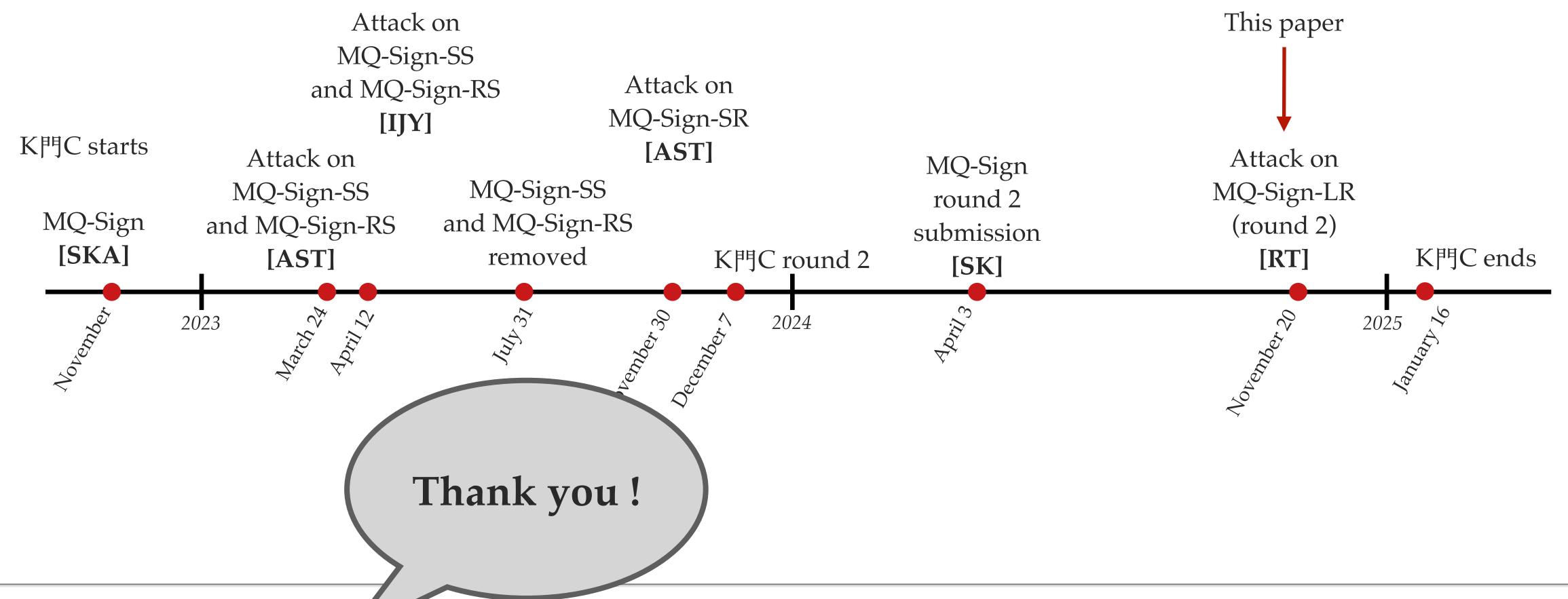
[SKA] Shim, Kim, An. MQ-Sign. A New Post-Quantum Signature Scheme based on Multivariate Quadratic Equations: Shorter and Faster. (2022)

[AST] Aulbach, Samardjiska, Trimoska. Practical key-recovery attack on MQ-Sign and more. (2023)

[IJY] Ikematsu, Jo, Yasuda. A security analysis on MQ-Sign. (2023)

[SK] Shim, Kwon. MQ-Sign. A New Post-Quantum Signature Scheme based on Multivariate Quadratic Equations: Shorter and Faster. (2024)

[RT] Ran, Trimoska. Shifting our knowledge of MQ-Sign security. (2024)



[SKA] Shim, Kim, An. MQ-Sign. A N Post-Quantum Signature Scheme based on Multivariate Quadratic Equations: Shorter and Faster. (2022)

[AST] Aulbach, Samardjiska, Trimoska. Practical key-recovery attack on MQ-Sign and more. (2023)

[IJY] Ikematsu, Jo, Yasuda. A security analysis on MQ-Sign. (2023)

[SK] Shim, Kwon. MQ-Sign. A New Post-Quantum Signature Scheme based on Multivariate Quadratic Equations: Shorter and Faster. (2024)

[RT] Ran, Trimoska. Shifting our knowledge of MQ-Sign security. (2024)

