

Matrix Code Equivalence and Applications

Monika Trimoska (based on joint work with Tung Chou, Ruben Niederhagen, Edoardo Persichetti, Tovohery Hajatiana Randrianarisoa, Krijn Reijnders and Simona Samardjiska)

Séminaire Laboratoire MIS November 24th, 2022

Matrix Code Equivalence (MCE)

Matrix code \mathcal{C} : a subspace of $\mathcal{M}_{m \times n}(\mathbb{F}_q)$ of dimension k endowed with rank metric

$$d(\mathbf{A},\mathbf{B}) = \mathsf{Rank}(\mathbf{A} - \mathbf{B})$$

Matrix code \mathcal{C} : a subspace of $\mathcal{M}_{m \times n}(\mathbb{F}_q)$ of dimension k endowed with rank metric

$$d(\mathbf{A}, \mathbf{B}) = \mathsf{Rank}(\mathbf{A} - \mathbf{B})$$

Isometry μ : a homomorphism of matrix codes $\mathcal{C} \to \mathcal{D}$ such that for all $\mathbf{C} \in \mathcal{C}$,

$$\mathsf{Rank}\,\mathbf{C} = \mathsf{Rank}\,\mu(\mathbf{C})$$

Matrix code C: a subspace of $\mathcal{M}_{m \times n}(\mathbb{F}_q)$ of dimension k endowed with rank metric

$$d(\mathbf{A}, \mathbf{B}) = \mathsf{Rank}(\mathbf{A} - \mathbf{B})$$

Isometry μ : a homomorphism of matrix codes $\mathcal{C} \to \mathcal{D}$ such that for all $\mathbf{C} \in \mathcal{C}$,

$$\mathsf{Rank}\,\mathbf{C}=\mathsf{Rank}\,\mu(\mathbf{C})$$

Matrix Code Equivalence (MCE) problem [Berger, 2003]

MCE(k, n, m, C, D):

Input: Two k-dimensional matrix codes $\mathcal{C},\mathcal{D}\subset\mathcal{M}_{m\times n}(\mathbb{F}_q)$

Question: Find – if any – an isometry $\mu: \mathcal{C} \to \mathcal{D}$.

Matrix code C: a subspace of $\mathcal{M}_{m \times n}(\mathbb{F}_q)$ of dimension k endowed with rank metric

$$d(\mathbf{A}, \mathbf{B}) = \mathsf{Rank}(\mathbf{A} - \mathbf{B})$$

Isometry μ : a homomorphism of matrix codes $\mathcal{C} \to \mathcal{D}$ such that for all $\mathbf{C} \in \mathcal{C}$,

$$\operatorname{\mathsf{Rank}} \mathbf{C} = \operatorname{\mathsf{Rank}} \mu(\mathbf{C})$$

Matrix Code Equivalence (MCE) problem [Berger, 2003]

MCE(k, n, m, C, D):

Input: Two k-dimensional matrix codes $\mathcal{C},\mathcal{D}\subset\mathcal{M}_{m\times n}(\mathbb{F}_q)$

Question: Find – if any – an isometry $\mu: \mathcal{C} \to \mathcal{D}$.

Known: Any isometry $\mu: \mathcal{C} \to \mathcal{D}$ can be written, for some $\mathbf{A} \in GL_m(q)$, $\mathbf{B} \in GL_n(q)$, as

$$\textbf{C} \mapsto \textbf{ACB} \in \mathcal{D}$$

$$\mu: \mathbf{C} \mapsto \mathbf{ACB} \in \mathcal{D}$$
, with $\mathbf{A} \in \mathrm{GL}_m(q)$ and $\mathbf{B} \in \mathrm{GL}_n(q)$

▶ when $\mathbf{A} = \mathrm{Id}_m$, or $\mathbf{B} = \mathrm{Id}_n$, finding μ is easy (MCRE)

$$\mu: \mathbf{C} \mapsto \mathbf{ACB} \in \mathcal{D}$$
, with $\mathbf{A} \in \mathrm{GL}_m(q)$ and $\mathbf{B} \in \mathrm{GL}_n(q)$

- ▶ when $\mathbf{A} = \mathrm{Id}_m$, or $\mathbf{B} = \mathrm{Id}_n$, finding μ is easy (MCRE)
- ightharpoonup implicit upper bound $\mathcal{O}^*(q^{m^2})$ time: brute force smallest side, then solve MCRE

$$\mu: \mathbf{C} \mapsto \mathbf{ACB} \in \mathcal{D}$$
, with $\mathbf{A} \in \mathrm{GL}_m(q)$ and $\mathbf{B} \in \mathrm{GL}_n(q)$

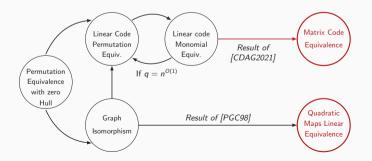
- ▶ when $\mathbf{A} = \mathrm{Id}_m$, or $\mathbf{B} = \mathrm{Id}_n$, finding μ is easy (MCRE)
- ▶ implicit upper bound $\mathcal{O}^*(q^{m^2})$ time: brute force smallest side, then solve MCRE
- lacktriangleright code equivalence for \mathbb{F}_{q^m} -linear codes with rank metric reduces to MCRE

$$\mu: \mathbf{C} \mapsto \mathbf{ACB} \in \mathcal{D}$$
, with $\mathbf{A} \in \mathrm{GL}_m(q)$ and $\mathbf{B} \in \mathrm{GL}_n(q)$

- ▶ when $\mathbf{A} = \mathrm{Id}_m$, or $\mathbf{B} = \mathrm{Id}_n$, finding μ is easy (MCRE)
- ▶ implicit upper bound $\mathcal{O}^*(q^{m^2})$ time: brute force smallest side, then solve MCRE
- lacktriangleright code equivalence for \mathbb{F}_{q^m} -linear codes with rank metric reduces to MCRE
- ▶ MCE is at least as hard as Monomial Equivalence Problem in the Hamming metric

$$\mu: \mathbf{C} \mapsto \mathbf{ACB} \in \mathcal{D}$$
, with $\mathbf{A} \in \mathrm{GL}_m(q)$ and $\mathbf{B} \in \mathrm{GL}_n(q)$

- ▶ when $\mathbf{A} = \mathrm{Id}_m$, or $\mathbf{B} = \mathrm{Id}_n$, finding μ is easy (MCRE)
- ightharpoonup implicit upper bound $\mathcal{O}^*(q^{m^2})$ time: brute force smallest side, then solve MCRE
- ightharpoonup code equivalence for \mathbb{F}_{q^m} -linear codes with rank metric reduces to MCRE
- ▶ MCE is at least as hard as Monomial Equivalence Problem in the Hamming metric



What is QMLE?

▶ systems of multivariate polynomials $\mathcal{P} = (p_1, p_2, \dots, p_k)$, every p_s polynomial in N variables x_1, \dots, x_N

- ▶ systems of multivariate polynomials $\mathcal{P} = (p_1, p_2, \dots, p_k)$, every p_s polynomial in N variables x_1, \dots, x_N
- \blacktriangleright most interesting when each p_s is at most degree 2

$$p_s(x_1,\ldots,x_N) = \sum \gamma_{ij}^{(s)} x_i x_j + \sum \beta_i^{(s)} x_i + \alpha^{(s)}, \qquad \alpha^{(s)}, \beta_i^{(s)}, \gamma_{ij}^{(s)} \in \mathbb{F}_q$$

- ▶ systems of multivariate polynomials $\mathcal{P} = (p_1, p_2, \dots, p_k)$, every p_s polynomial in N variables x_1, \dots, x_N
- \triangleright most interesting when each p_s is at most degree 2 and homogeneous

$$p_s(\mathsf{x}_1,\ldots,\mathsf{x}_N) = \sum \gamma_{ij}^{(s)} \mathsf{x}_i \mathsf{x}_j \qquad \qquad \gamma_{ij}^{(s)} \in \mathbb{F}_q$$

- ▶ systems of multivariate polynomials $\mathcal{P} = (p_1, p_2, \dots, p_k)$, every p_s polynomial in N variables x_1, \dots, x_N
- \triangleright most interesting when each p_s is at most degree 2 and homogeneous

$$p_s(x_1,\ldots,x_N) = \sum \gamma_{ij}^{(s)} x_i x_j$$
 $\gamma_{ij}^{(s)} \in \mathbb{F}_q$

Quadratic Maps Linear Equivalence (QMLE) problem

QMLE($N, k, \mathcal{F}, \mathcal{P}$):

Input: Two *k*-tuples of quadratic maps

$$\mathcal{F} = (f_1, f_2, \dots, f_k), \ \mathcal{P} = (p_1, p_2, \dots, p_k) \in \mathbb{F}_q[x_1, \dots, x_N]^k$$

Question: Find – if any – $S \in GL_N(q)$, $T \in GL_k(q)$ such that

$$\mathcal{P}(\mathbf{x}) = \mathcal{F}(\mathbf{x}\mathbf{S}) \cdot \mathbf{T}$$

4

Quadratic maps

$$p_{s} = \sum \gamma_{ij}^{(s)} x_{i} x_{j} = (x_{1}, \dots, x_{N}) \underbrace{\begin{pmatrix} \gamma_{11} & \dots & \frac{\gamma_{1N}}{2} \\ \frac{\gamma_{N1}}{2} & \dots & \gamma_{NN} \end{pmatrix}}_{\mathbf{P}^{(s)} \in \mathcal{M}_{N \times N}(\mathbb{F}_{q})} \begin{pmatrix} x_{1} \\ \vdots \\ x_{N} \end{pmatrix}$$

Quadratic maps

$$p_{s} = \sum \gamma_{ij}^{(s)} x_{i} x_{j} = (x_{1}, \dots, x_{N}) \underbrace{\begin{pmatrix} \gamma_{11} & \dots & \frac{\gamma_{1N}}{2} \\ \frac{\gamma_{N1}}{2} & \dots & \gamma_{NN} \end{pmatrix}}_{\mathbf{P}^{(s)} \in \mathcal{M}_{N \times N}(\mathbb{F}_{q})} \begin{pmatrix} x_{1} \\ \vdots \\ x_{N} \end{pmatrix}$$

so with $\mathbf{x} = (x_1, \dots, x_N)$, we get $p_s(\mathbf{x}) = \mathbf{x} \mathbf{P}^{(s)} \mathbf{x}^T$

Quadratic maps

$$p_{s} = \sum \gamma_{ij}^{(s)} x_{i} x_{j} = (x_{1}, \dots, x_{N}) \underbrace{\begin{pmatrix} \gamma_{11} & \dots & \frac{\gamma_{1N}}{2} \\ \frac{\gamma_{N1}}{2} & \dots & \gamma_{NN} \end{pmatrix}}_{\mathbf{P}^{(s)} \in \mathcal{M}_{N \times N}(\mathbb{F}_{q})} \begin{pmatrix} x_{1} \\ \vdots \\ x_{N} \end{pmatrix}$$

so with $\mathbf{x} = (x_1, \dots, x_N)$, we get $p_s(\mathbf{x}) = \mathbf{x} \mathbf{P}^{(s)} \mathbf{x}^T$ so QMLE can be rewritten in matrix form

$$\sum_{1\leqslant r\leqslant k}\widetilde{t}_{rs}\mathbf{P}^{(r)}=\mathbf{S}\mathbf{F}^{(s)}\mathbf{S}^{\top},\ \ \forall s,1\leqslant s\leqslant k,$$

where \widetilde{t}_{ij} are entries of \mathbf{T}^{-1}

5

▶ reduction: an MCE instance (k, n, m, C, D) results in a QMLE instance (m + n, k, F, P) with

$$\mathbf{S} = \begin{bmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{B}^\top \end{bmatrix}$$

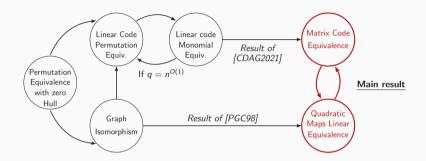
▶ reduction: an MCE instance (k, n, m, C, D) results in a QMLE instance (m + n, k, F, P) with

$$\mathbf{S} = egin{bmatrix} \mathbf{A} & \mathbf{0} \ \mathbf{0} & \mathbf{B}^{ op} \end{bmatrix}$$

▶ solving the instance using a birthday-based algorithm $\mathcal{O}^*(q^{2/3(m+n)})$ [Bouillaguet, Fouque & Véber, 2013]



Main result: MCE is equivalent to QMLE



- ► Main result: MCE is equivalent to QMLE
- ▶ Gives **improved upper bound** to complexity of solving MCE (w.l.o.g. assume $m \leq n$)
 - solvable in $\mathcal{O}^*(q^{2/3(m+n)})$ time, when $k \leqslant n+m$ can be improved to $\mathcal{O}^*(q^m)$

$$S_1, S_2 \in U, |S_1| = |S_2| = N,$$

Problem: Find an equivalence function $\phi: \mathcal{S}_1 \to \mathcal{S}_2$

$$S_1, S_2 \in U$$
, $|S_1| = |S_2| = N$,

Problem: Find an equivalence function $\phi: S_1 \to S_2$

Algorithm 1: General Birthday-based Equivalence Finder

Assumptions:

- ▶ Efficient predicate $\mathbb{P}: U \to \{\top, \bot\}$ invariant under the equivalence ϕ ,
- ▶ Efficient FINDFUNCTION: if collision $(b = \phi(a))$ return ϕ and \bot otherwise.

$$S_1, S_2 \in U, \ |S_1| = |S_2| = N,$$

Problem: Find an equivalence function $\phi: S_1 \to S_2$

Algorithm 1: General Birthday-based Equivalence Finder

```
1: function SAMPLESET(S, \mathbb{P})
2: L \leftarrow \emptyset
3: repeat
4: a \leftarrow S
5: if \mathbb{P}(a) then L \leftarrow L \cup \{a\}
6: until |L| = \ell
7: return L
```

Assumptions:

- ▶ Efficient predicate $\mathbb{P}: U \to \{\top, \bot\}$ invariant under the equivalence ϕ ,
- ▶ Efficient FINDFUNCTION: if collision $(b = \phi(a))$ return ϕ and \bot otherwise.

```
S_1, S_2 \in U, \ |S_1| = |S_2| = N,
Problem: Find an equivalence function \phi: S_1 \to S_2
```

Algorithm 1: General Birthday-based Equivalence Finder

1: function SampleSet (S, \mathbb{P})		8:	function CollisionFind (S_1, S_2)
2:	$L \leftarrow \emptyset$	9:	$L_i \leftarrow ext{SampleSet}(S_i, \mathbb{P}), \ i \in \{1, 2\}$
3:	repeat	10:	for all $(a,b) \in L_1 \times L_2$ do
4:	$a \stackrel{\$}{\longleftarrow} S$	11:	$\phi \leftarrow \text{FindFunction}(a, b)$
5:	if $\mathbb{P}(a)$ then $L \leftarrow L \cup \{a\}$	12:	if $\phi eq \perp$ then
6:	until $ L =\ell$	13:	return solution ϕ
7:	return L	14:	return \bot

Assumptions:

- ▶ Efficient predicate $\mathbb{P}: U \to \{\top, \bot\}$ invariant under the equivalence ϕ ,
- ▶ Efficient FINDFUNCTION: if collision $(b = \phi(a))$ return ϕ and \bot otherwise.

 \blacktriangleright Works for any $\mathbb{P}:U\to \{\top,\bot\}$ invariant under the equivalence ϕ

- ▶ Works for any $\mathbb{P}: U \to \{\top, \bot\}$ invariant under the equivalence ϕ
 - ullet Crucial for performance: density of the predicate ${\mathbb P}$

$$d = |U_{\top}|/|U|, \quad U_{\top} = \{x \in U \mid \mathbb{P}(x) = \top\}$$

- ▶ Works for any $\mathbb{P}: U \to \{\top, \bot\}$ invariant under the equivalence ϕ
 - \bullet Crucial for performance: density of the predicate $\mathbb P$

$$d = |U_{\top}|/|U|, \quad U_{\top} = \{x \in U \mid \mathbb{P}(x) = \top\}$$

• dN elements in $S_1(S_2)$ satisfying $\mathbb P$

- lackbox Works for any $\mathbb{P}:U \to \{\top,\bot\}$ invariant under the equivalence ϕ
 - ullet Crucial for performance: density of the predicate ${\mathbb P}$

$$d = |U_{\top}|/|U|, \quad U_{\top} = \{x \in U \mid \mathbb{P}(x) = \top\}$$

- dN elements in $S_1(S_2)$ satisfying $\mathbb P$
- ullet we need lists of size $\ell=\sqrt{d\cdot N}$ for collision with success probability 1-1/e

- lackbox Works for any $\mathbb{P}:U \to \{\top,\bot\}$ invariant under the equivalence ϕ
 - ullet Crucial for performance: density of the predicate ${\mathbb P}$

$$d = |U_{\top}|/|U|, \quad U_{\top} = \{x \in U \mid \mathbb{P}(x) = \top\}$$

- dN elements in $S_1(S_2)$ satisfying $\mathbb P$
- ullet we need lists of size $\ell=\sqrt{d\cdot N}$ for collision with success probability 1-1/e
- ► Queries FINDFUNCTION *d* · *N* times

- ▶ Works for any $\mathbb{P}: U \to \{\top, \bot\}$ invariant under the equivalence ϕ
 - ullet Crucial for performance: density of the predicate ${\mathbb P}$

$$d = |U_{\top}|/|U|, \quad U_{\top} = \{x \in U \mid \mathbb{P}(x) = \top\}$$

- dN elements in $S_1(S_2)$ satisfying $\mathbb P$
- we need lists of size $\ell = \sqrt{d \cdot N}$ for collision with success probability 1 1/e
- Queries FINDFUNCTION d · N times
- ightharpoonup Performs $\ell/d=\sqrt{N/d}$ checks in SampleSet

- lackbox Works for any $\mathbb{P}:U o \{ op, ot\}$ invariant under the equivalence ϕ
 - ullet Crucial for performance: density of the predicate ${\mathbb P}$

$$d = |U_{\top}|/|U|, \quad U_{\top} = \{x \in U \mid \mathbb{P}(x) = \top\}$$

- dN elements in $S_1(S_2)$ satisfying $\mathbb P$
- we need lists of size $\ell = \sqrt{d \cdot N}$ for collision with success probability 1 1/e
- ▶ Queries FINDFUNCTION *d* · *N* times
- ▶ Performs $\ell/d = \sqrt{N/d}$ checks in SampleSet
- ▶ Best performance if blue and green balanced

- lackbox Works for any $\mathbb{P}:U o\{ op,ot\}$ invariant under the equivalence ϕ
 - ullet Crucial for performance: density of the predicate ${\mathbb P}$

$$d = |U_{\top}|/|U|, \quad U_{\top} = \{x \in U \mid \mathbb{P}(x) = \top\}$$

- dN elements in $S_1(S_2)$ satisfying $\mathbb P$
- ullet we need lists of size $\ell=\sqrt{d\cdot N}$ for collision with success probability 1-1/e
- ▶ Queries FINDFUNCTION *d* · *N* times
- ightharpoonup Performs $\ell/d=\sqrt{N/d}$ checks in SampleSet
- ▶ Best performance if blue and green balanced
 - ullet when $d={\it N}^{-1/3}\colon {\it N}^{rac{2}{3}}$ checks in <code>SampleSet</code> and ${\it N}^{rac{2}{3}}$ queries to <code>FindFunction</code>

Concrete complexity of solving MCE:

$$\max(\sqrt{q^{m+n}/d}\cdot \mathit{C}_{\mathbb{P}}, \mathit{d}q^{m+n}\cdot \mathit{C}_{\mathsf{iQ}})$$

Solving MCE using the Birthday-based Equivalence Finder

Concrete complexity of solving MCE:

$$\max(\sqrt{q^{m+n}/d}\cdot C_{\mathbb{P}},dq^{m+n}\cdot C_{\mathsf{iQ}})$$

Asymptotic complexity of solving MCE:

$$\mathcal{O}(q^{\frac{2}{3}(n+m)}\cdot C_{\mathsf{iQ}}^{\frac{1}{3}})$$

(a perfect balance between the two steps of the algorithm)

*(success prob. 1 - 1/e)

Matrix code equivalence:

a cryptographic group action?

$$\mu:\mathcal{C} \to \mathcal{D}$$

$$\mathbf{C} \mapsto \mathbf{ACB}$$

lacksquare μ can be seen as element $(\mathbf{A},\mathbf{B})\in\mathsf{GL}_m(q) imes\mathsf{GL}_n(q)$

$$\mu: \mathcal{C} \to \mathcal{D}$$

$$\mathbf{C} \mapsto \mathbf{ACB}$$

- lacksquare μ can be seen as element $(\mathbf{A},\mathbf{B})\in\mathsf{GL}_m(q) imes\mathsf{GL}_n(q)$
- $\blacktriangleright \ \mu$ acts on $k\text{-dimensional codes: }\mathcal{D}=\mu\cdot\mathcal{C}$

$$\mu: \mathcal{C} \to \mathcal{D}$$

$$\mathbf{C} \mapsto \mathbf{ACB}$$

- lacksquare μ can be seen as element $(\mathbf{A},\mathbf{B})\in\mathsf{GL}_m(q) imes\mathsf{GL}_n(q)$
- lacksquare μ acts on k-dimensional codes: $\mathcal{D} = \mu \cdot \mathcal{C}$
- ightharpoonup hence, $\mathsf{GL}_m(q) imes \mathsf{GL}_n(q)$ acts on k-dimensional matrix codes $\mathcal{C} \subset \mathcal{M}_{m \times n}(\mathbb{F}_q)$.

$$\mu: \mathcal{C} \to \mathcal{D}$$

$$\mathbf{C} \mapsto \mathbf{ACB}$$

- lacksquare μ can be seen as element $(\mathbf{A},\mathbf{B})\in\mathsf{GL}_m(q) imes\mathsf{GL}_n(q)$
- ightharpoonup μ acts on k-dimensional codes: $\mathcal{D} = \mu \cdot \mathcal{C}$
- ightharpoonup hence, $\mathsf{GL}_m(q) imes \mathsf{GL}_n(q)$ acts on k-dimensional matrix codes $\mathcal{C} \subset \mathcal{M}_{m \times n}(\mathbb{F}_q)$.
- ▶ one-way: our analysis show that MCE is hard.

Cryptographic Group Action: $G \times X \rightarrow X$

Given x_1 and x_2 , it is hard to find an element g s.t. $x_2 = g \cdot x_1$

Cryptographic Group Action: $G \times X \rightarrow X$

Given x_1 and x_2 , it is hard to find an element g s.t. $x_2 = g \cdot x_1$

What can we do with it?

Cryptographic Group Action: $G \times X \rightarrow X$

Given x_1 and x_2 , it is hard to find an element g s.t. $x_2 = g \cdot x_1$

What can we do with it?

- ▶ Zero-Knowledge Interactive Proof of knowledge
 - Zero-Knowledgness
 - soundness
 - can be used as identification scheme (IDS)

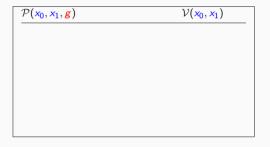
Cryptographic Group Action: $G \times X \to X$

Given x_1 and x_2 , it is hard to find an element g s.t. $x_2 = g \cdot x_1$

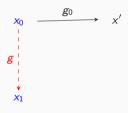
What can we do with it?

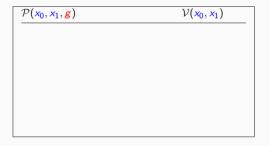
- **▶** Zero-Knowledge Interactive Proof of knowledge
 - Zero-Knowledgness
 - soundness
 - can be used as identification scheme (IDS)
- Digital Signature via Fiat-Shamir transform
 - F-S is a common strategy for PQ signatures
 - Dilithium, MQDSS, Picnic in NIST competition
 - From cryptographic group actions
 - ▶ Patarin's signature, LESS-FM, CSIDH, SeaSign . . .

Let g be an element s.t. $x_1 = g \cdot x_0$.

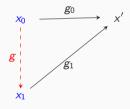


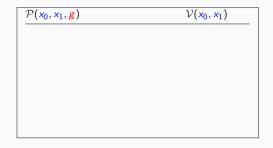
Let g be an element s.t. $x_1 = g \cdot x_0$.



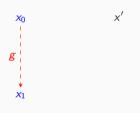


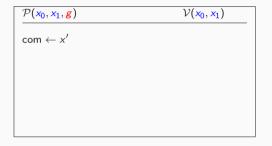
Let g be an element s.t. $x_1 = g \cdot x_0$.



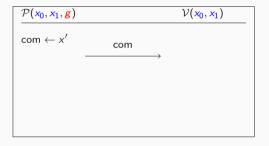


Let g be an element s.t. $x_1 = g \cdot x_0$.

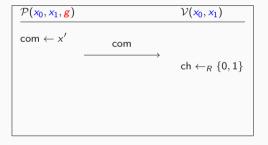




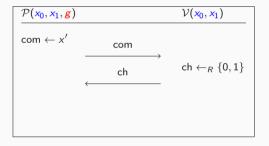
Let g be an element s.t. $x_1 = g \cdot x_0$.



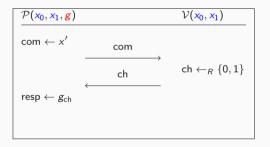
Let g be an element s.t. $x_1 = g \cdot x_0$.



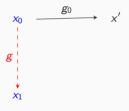
Let g be an element s.t. $x_1 = g \cdot x_0$.

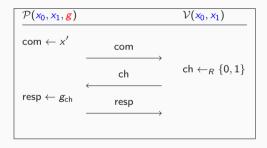


Let g be an element s.t. $x_1 = g \cdot x_0$.

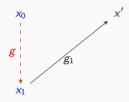


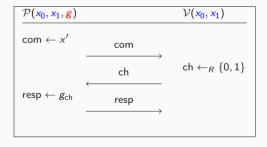
Let g be an element s.t. $x_1 = g \cdot x_0$.



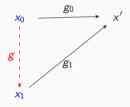


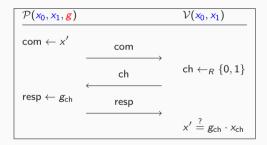
Let g be an element s.t. $x_1 = g \cdot x_0$.



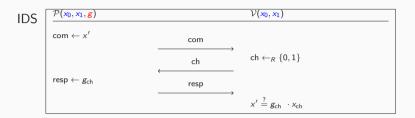


Let g be an element s.t. $x_1 = g \cdot x_0$.

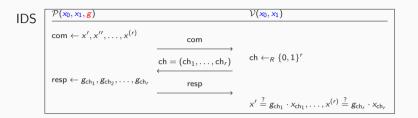




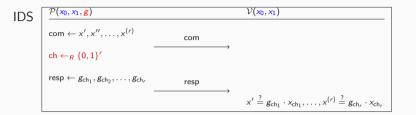
Digital Signatures via the Fiat-Shamir transform



Digital Signatures via the Fiat-Shamir transform

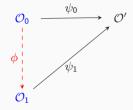


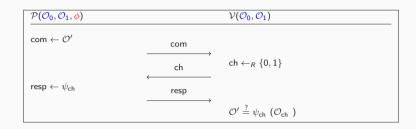
Digital Signatures via the Fiat-Shamir transform



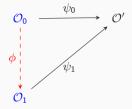


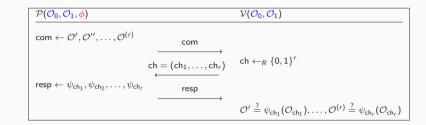
Optimization techniques



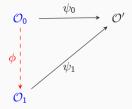


▶ Challenge space is of size $2 \Rightarrow$ Soundness error is 1/2



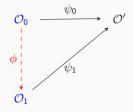


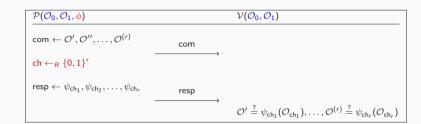
- ▶ Challenge space is of size $2 \Rightarrow$ Soundness error is 1/2
- ▶ For security of λ bits, needs to be repeated $r = \lambda$ times!



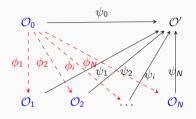
$\mathcal{P}(\mathcal{O}_0,\mathcal{O}_1,\pmb{\phi})$		$\mathcal{V}(\mathcal{O}_0,\mathcal{O}_1)$
$com \leftarrow \mathcal{O}', \mathcal{O}'', \dots, \mathcal{O}^{(r)}$	com	
$ch \leftarrow_{\mathcal{R}} \{0,1\}^r$		
$resp \leftarrow \psi_{ch_1}, \psi_{ch_2}, \dots, \psi_{ch_r}$	resp	
		$\mathcal{O}' \stackrel{?}{=} \psi_{ch_1}(\mathcal{O}_{ch_1}), \dots, \mathcal{O}^{(r)} \stackrel{?}{=} \psi_{ch_r}(\mathcal{O}_{ch_r})$

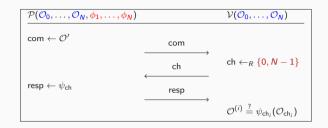
- ▶ Challenge space is of size $2 \Rightarrow$ Soundness error is 1/2
- ▶ For security of λ bits, needs to be repeated $r = \lambda$ times!
- ightharpoonup \Rightarrow Signature contains λ isometries (from λ rounds)



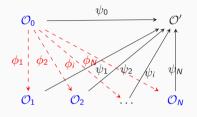


- ▶ Challenge space is of size $2 \Rightarrow$ Soundness error is 1/2
- ▶ For security of λ bits, needs to be repeated $r = \lambda$ times!
- ightharpoonup \Rightarrow Signature contains λ isometries (from λ rounds)
- ightharpoonup \Rightarrow All operations in signing and verification need to be repeated λ times



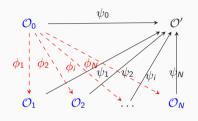


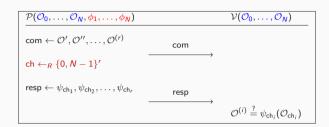
▶ Challenge space is now of size $N \Rightarrow$ Soundness error is 1/N



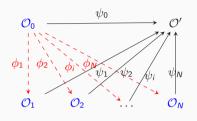
```
 \begin{array}{c|c} \mathcal{P}(\mathcal{O}_0,\ldots,\mathcal{O}_N,\phi_1,\ldots,\phi_N) & \mathcal{V}(\mathcal{O}_0,\ldots,\mathcal{O}_N) \\ \hline \\ \mathsf{com} \leftarrow \mathcal{O}',\mathcal{O}'',\ldots,\mathcal{O}^{(r)} & \\ \hline \\ \mathsf{resp} \leftarrow \psi_{\mathsf{ch}_1},\psi_{\mathsf{ch}_2},\ldots,\psi_{\mathsf{ch}_r} & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & \\ \\ & & \\ \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\
```

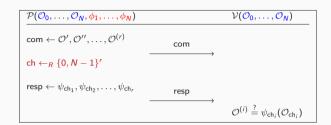
- ▶ Challenge space is now of size $N \Rightarrow$ Soundness error is 1/N
- ▶ For security of λ bits, needs to be repeated $r = \frac{\lambda}{\log N}$ times!



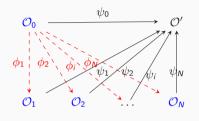


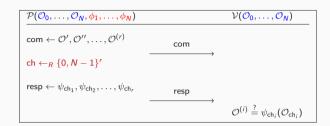
- ▶ Challenge space is now of size $N \Rightarrow$ Soundness error is 1/N
- ▶ For security of λ bits, needs to be repeated $r = \frac{\lambda}{\log N}$ times!
- ightharpoonup \Rightarrow Signature contains $\frac{\lambda}{\log N}$ isometries



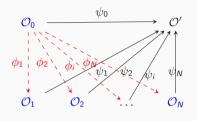


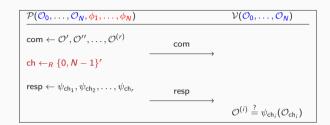
- ▶ Challenge space is now of size $N \Rightarrow$ Soundness error is 1/N
- ▶ For security of λ bits, needs to be repeated $r = \frac{\lambda}{\log N}$ times!
- ightharpoonup \Rightarrow Signature contains $\frac{\lambda}{\log N}$ isometries
- ightharpoonup \Rightarrow All operations in signing and verification need to be repeated $\frac{\lambda}{\log N}$ times





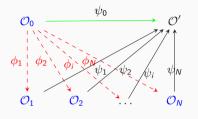
- ▶ Challenge space is now of size $N \Rightarrow$ Soundness error is 1/N
- ▶ For security of λ bits, needs to be repeated $r = \frac{\lambda}{\log N}$ times!
- ightharpoonup \Rightarrow Signature contains $\frac{\lambda}{\log N}$ isometries
- ightharpoonup \Rightarrow All operations in signing and verification need to be repeated $\frac{\lambda}{\log N}$ times
- ► There is a cost *N*-fold increase in public and private key

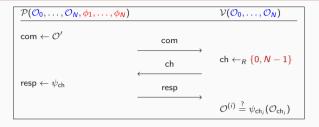




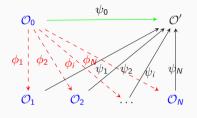
- ▶ Challenge space is now of size $N \Rightarrow$ Soundness error is 1/N
- ▶ For security of λ bits, needs to be repeated $r = \frac{\lambda}{\log N}$ times!
- ightharpoonup \Rightarrow Signature contains $\frac{\lambda}{\log N}$ isometries
- ightharpoonup \Rightarrow All operations in signing and verification need to be repeated $\frac{\lambda}{\log N}$ times
- ► There is a cost N-fold increase in public and private key
- ► Always necessary to find the best trade-off

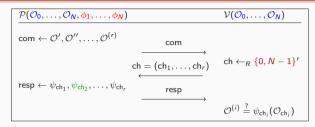
Optimization 2: Reduce signature size by using seeds



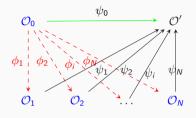


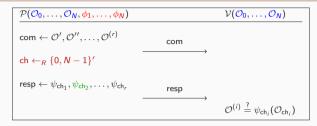
lacktriangle The map ψ_0 is chosen at random \Rightarrow one can include only seed in signature



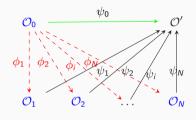


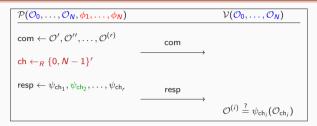
- ▶ The map ψ_0 is chosen at random \Rightarrow one can include only seed in signature
 - ullet ψ_0 can be reconstructed from the seed



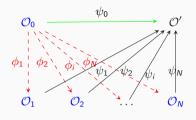


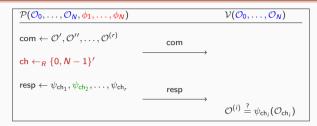
- ▶ The map ψ_0 is chosen at random \Rightarrow one can include only seed in signature
 - ullet ψ_0 can be reconstructed from the seed
- **Problem 1:** This works only for challenge 0, and probability of choosing challenge 0 is 1/N



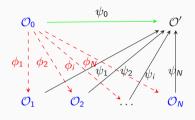


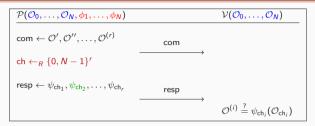
- ▶ The map ψ_0 is chosen at random \Rightarrow one can include only seed in signature
 - ullet ψ_0 can be reconstructed from the seed
- **Problem 1:** This works only for challenge 0, and probability of choosing challenge 0 is 1/N
 - ullet \Rightarrow not a big benefit in general



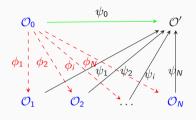


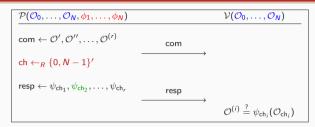
- ▶ The map ψ_0 is chosen at random \Rightarrow one can include only seed in signature
 - ψ_0 can be reconstructed from the seed
- Problem 1: This works only for challenge 0, and probability of choosing challenge 0 is 1/N
 - ⇒ not a big benefit in general
- **Problem 2:** We don't even know that this is going to happen exactly 1/N of times



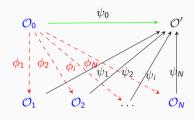


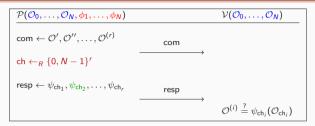
- ▶ The map ψ_0 is chosen at random \Rightarrow one can include only seed in signature
 - ullet ψ_0 can be reconstructed from the seed
- **Problem 1:** This works only for challenge 0, and probability of choosing challenge 0 is 1/N
 - ⇒ not a big benefit in general
- **Problem 2:** We don't even know that this is going to happen exactly 1/N of times
 - ⇒ signature is not of constant size



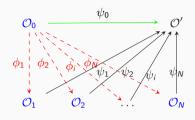


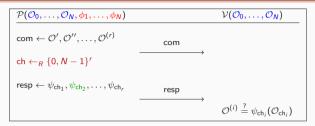
- ▶ The map ψ_0 is chosen at random \Rightarrow one can include only seed in signature
 - ullet ψ_0 can be reconstructed from the seed
- **Problem 1:** This works only for challenge 0, and probability of choosing challenge 0 is 1/N
 - ⇒ not a big benefit in general
- **Problem 2:** We don't even know that this is going to happen exactly 1/N of times
 - ⇒ signature is not of constant size
- ▶ Idea: Always have a fixed number *M* of 0 challenges



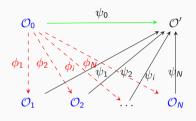


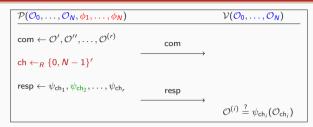
- ▶ The map ψ_0 is chosen at random \Rightarrow one can include only seed in signature
 - ullet ψ_0 can be reconstructed from the seed
- **Problem 1:** This works only for challenge 0, and probability of choosing challenge 0 is 1/N
 - ⇒ not a big benefit in general
- **Problem 2:** We don't even know that this is going to happen exactly 1/N of times
 - ⇒ signature is not of constant size
- ightharpoonup Idea: Always have a fixed number M of 0 challenges
 - We need a special hash function that always produces outputs with fixed number of 0s





- ▶ The map ψ_0 is chosen at random \Rightarrow one can include only seed in signature
 - ullet ψ_0 can be reconstructed from the seed
- **Problem 1:** This works only for challenge 0, and probability of choosing challenge 0 is 1/N
 - ⇒ not a big benefit in general
- **Problem 2:** We don't even know that this is going to happen exactly 1/N of times
 - ⇒ signature is not of constant size
- ightharpoonup Idea: Always have a fixed number M of 0 challenges
 - We need a special hash function that always produces outputs with fixed number of 0s





- ▶ The map ψ_0 is chosen at random \Rightarrow one can include only seed in signature
 - ullet ψ_0 can be reconstructed from the seed
- **Problem 1:** This works only for challenge 0, and probability of choosing challenge 0 is 1/N
 - ⇒ not a big benefit in general
- **Problem 2:** We don't even know that this is going to happen exactly 1/N of times
 - ⇒ signature is not of constant size
- ▶ Idea: Always have a fixed number M of 0 challenges
 - We need a special hash function that always produces outputs with fixed number of 0s
- ► Always necessary to find the best trade-off

(1) MCE is "easy to understand"

- (1) MCE is "easy to understand"
- (2) Complexity linked to well-studied problem in multivariate crypto (IP)

- (1) MCE is "easy to understand"
- (2) Complexity linked to well-studied problem in multivariate crypto (IP)
- (3) Cryptographic group action: great building block!

- (1) MCE is "easy to understand"
- (2) Complexity linked to well-studied problem in multivariate crypto (IP)
- (3) Cryptographic group action: great building block!
- (4) We construct a digital signature scheme

- (1) MCE is "easy to understand"
- (2) Complexity linked to well-studied problem in multivariate crypto (IP)
- (3) Cryptographic group action: great building block!
- (4) We construct a digital signature scheme
- (5) We construct (linkable) ring signatures

preprints:

- ► MCE hardness: https://eprint.iacr.org/2022/276.pdf
- ► MEDS: https://eprint.iacr.org/2022/1559.pdf