Disorientation faults in CSIDH

17 March 2023 Crypto Working Group meeting

Gustavo Banegas *INRIA*

Juliane Krämer
University of
Regensburg

Tanja Lange TU/e & Academia Sinica

Michael Meyer University of Regensburg

Lorenz Panny Academia Sinica

Krijn Reijnders
Radboud Universitv

Jana Sotáková UvA & QuSoft

Monika Trimoska
Radboud University

Fault attacks

Nixdorf, CC BY-SA 3.0

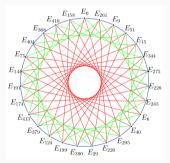
Physical attacks: trigger an error during the execution of sensitive computations; infer secret information from faulty outputs;

Takeaway:

- ▶ We propose lightweight countermeasures.
- ▶ The security of CSIDH is not compromised.

1

Isogeny-based cryptography and CSIDH


- ▶ Part of post-quantum public-key cryptography.
- ▶ Isogeny: rational function that maps points from curve E1 to points on curve E2.

- ▶ **Degree** of an isogeny: number of points on E_1 mapping to the neutral element on E_2 . Computing an isogeny of degree $\ell_i \to \text{an } \ell_i$ -step.
- ▶ **CSIDH**: commutative group action suitable for non-interactive key exchange.

The CSIDH isogeny graph

- ▶ Nodes $\rightarrow \mathbb{F}_p$ -isomorphism classes of supersingular elliptic curves. Edges \rightarrow isogenies between them.
- ightharpoonup We can not compute the whole graph, but we can walk on it ightharpoonup compute a step and see on which node we arrive.
- ▶ $p = 4 \cdot \prod \ell_i 1$, for $\ell_i \in \{3, 5, \dots, 377, 587\}$ \rightarrow we can compute ℓ_i -steps in the positive or in the negative direction, for all ℓ_i .

Edges are 3, 5, and 7-isogenies. Image credit: Lorenz Panny.

Supersingular Isogeny Path problem

Given E_1 and E_2 two supersingular elliptic curves over \mathbb{F}_p , find and isogeny from E_1 to E_2 .

Walking on the graph

Magic box

Cards with instructions on how to compute steps.

- ▶ Some cards are for walking in the positive, and some are for walking in the negative direction.
- ▶ Some cards are missing instructions for certain steps (unlucky).

Key exchange

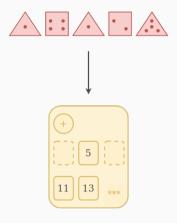
Key exchange

▶ Eve will relay the messages between Alice and Bob.

Node A +	3	5	7	11	13	- Node R	3	5	7	11	13
Node A +	5	-2	1	0	-4	= (Node B) +	1	-1	0	2	0

- ▶ Eve will relay the messages between Alice and Bob.
- ▶ She brings the magic box.

Computing the secret path

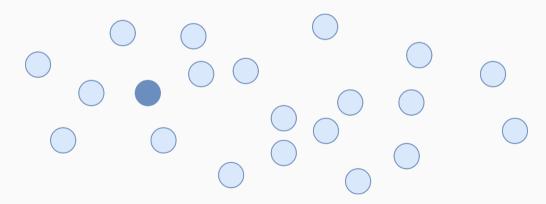

Alice gets a card with instructions.

Computing the secret path

Alice gets a card with instructions.

Computing the secret path

- Alice rolls 74 dice. Each dice has ℓ_i sides for $\ell_i \in \{3, 5, \dots, 377, 587\}$.
- Getting a 'one' on the dice with ℓ_i sides : Alice gets a card without instructions for making ℓ_i -steps.
- Getting anything else: Alice gets a card with instructions for making ℓ_i -steps. Instructions are either for positive or negative steps, both with equal probability.
- Alice can compute all or some of the steps that she gets instructions for. Each step is computed at most once.
- **Round**: the process from rolling the dice to computing all possible steps.
- Alice performs as many rounds as she needs to compute all steps from the secret key.

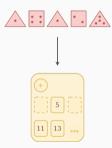

Computing the secret path (example)

Alice's secret key

	3	5	7	11	13
1 -1 0 3 0	1	-1	0	3	0

Left to compute

3	5	7	11	13
1	-1	0	3	0

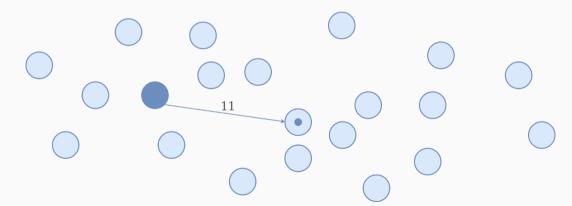

Computing the secret path (example)

Alice's secret key

3	5	7	11	13
1	-1	0	3	0

Left to compute

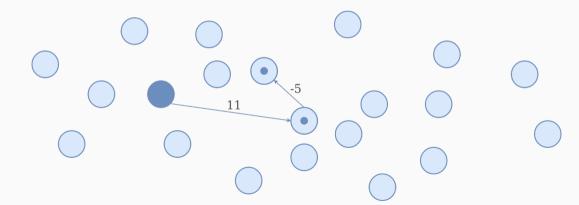
3	5	7	11	13
1	-1	0	3	0



Computing the secret path (round 1)

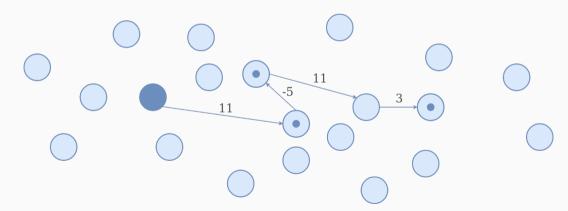
Alice's secret key 3 5 7 11 13 13 1 -1 0 3 0

Left to compute 3 5 7 11 13 1 1 -1 0 2 0



Computing the secret path (round 2)

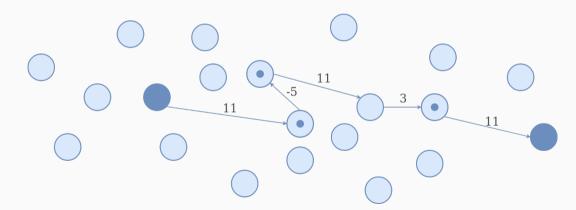
Left to compute 3 5 7 11 13 1 0 0 2 0



Computing the secret path (round 3)

Alice's secret key 3 5 7 11 13 1 1 -1 0 3 0

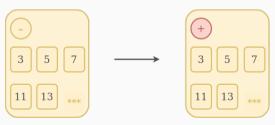
Computing the secret path (round 4)


1 -1 0 3 0

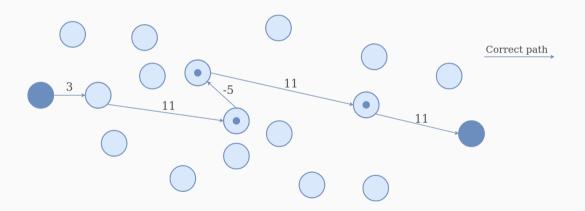
Left to compute

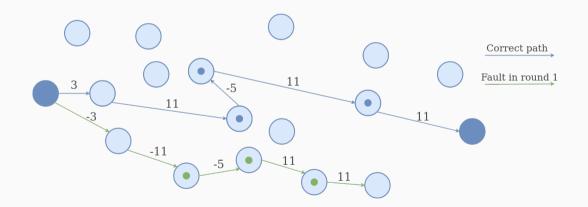
 3
 5
 7
 11
 13

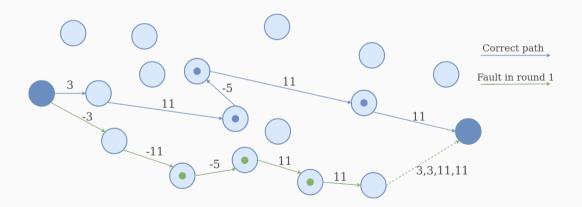
 0
 0
 0
 0
 0

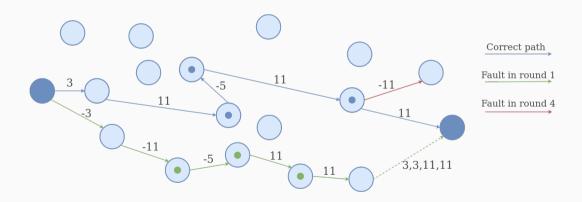

- Alice rolls 74 dice. Each dice has ℓ_i sides for $\ell_i \in \{3, 5, \dots, 377, 587\}$.
- Getting a 'one' on the dice with ℓ_i sides : Alice gets a card without instructions for making ℓ_i -steps.
- Getting anything else: Alice gets a card with instructions for making ℓ_i -steps. Instructions are either for positive or negative steps, both with equal probability.
- Alice can compute all or some of the steps that she gets instructions for. Each step is computed at most once.
- **Round**: the process from rolling the dice to computing all possible steps.
- Alice performs as many rounds as she needs to compute all steps from the secret key.

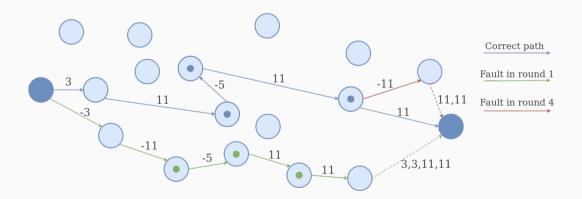
Eve's mission

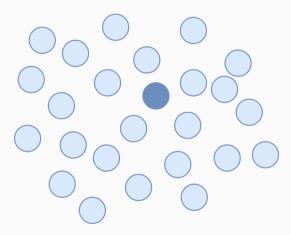

▶ You bring stickers to put over the direction sign on the cards.


▶ Alice thinks she has a card with instructions for positive steps, but she has a card with instructions for negative steps.

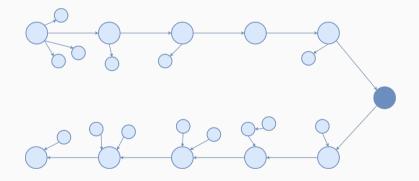

3	5	7	11	13
1	-1	0	3	0

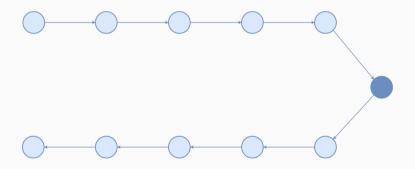

3	5	7	11	13
1	-1	0	3	0

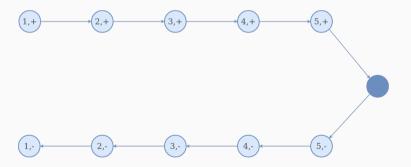

3	5	7	11	13
1	-1	0	3	0

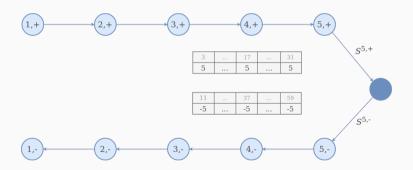


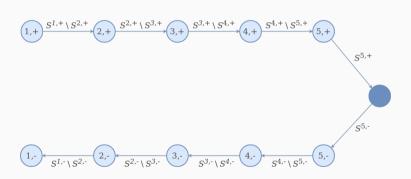
3	5	7	11	13
1	-1	0	3	0


3	5	7	11	13
1	-1	0	3	0








pubcrawl

In the full paper

- ▶ The isogeny details
- ► Attack on CSIDH
- ► Attack on CTIDH
- ▶ Exploiting the twist
- ► Lightweight countermeasures

eprint: 2022/1202